Introduce kimm
: a collection of image models, blocks and layers written in Keras3
#19718
Replies: 2 comments 10 replies
-
Thanks for your great work.
However, model.predict(x) throws
Thanks |
Beta Was this translation helpful? Give feedback.
-
Hi James. I've been using pretrained kimm models successfully in Docker containers. After training a model via fine-tuning and saving it to disk as a .keras file in one Docker container, if I load it up into a different Docker container to be used for inference, it triggers an automatic download of the pretrained weights again, even though they are not required for inference and the model frozen prior to saving it. Is there a way to avoid this behaviour? This doesn't happen if I use the keras.applications API for the same pretrained model. But I want to use kimm because it has a larger variety of available models! |
Beta Was this translation helpful? Give feedback.
-
Repository: https://github.com/james77777778/keras-image-models
If you want to try a different model that isn't available in Keras, you can explore this library.
Feel free to contact me if you encounter any issues or have ideas.
Introduction
Keras Image Models (
kimm
) aims to provide SOTA models with pretrained weights in a user-friendly manner.Features:
.tflite
and.onnx
.Usage
Quickstart
An end-to-end example: fine-tuning an image classification model on a cats vs. dogs dataset
Using
kimm.models.EfficientNetLiteB0
:Reference: Transfer learning & fine-tuning (keras.io)
Grad-CAM
Using
kimm.models.MobileViTS
:Reference: Grad-CAM class activation visualization (keras.io)
Model Zoo
timm
kimm.models.ConvMixer*
timm
kimm.models.ConvNeXt*
timm
kimm.models.DenseNet*
timm
kimm.models.EfficientNet*
timm
kimm.models.EfficientNetLite*
timm
kimm.models.EfficientNetV2*
timm
kimm.models.GhostNet*
timm
kimm.models.GhostNetV2*
timm
kimm.models.HGNet*
timm
kimm.models.HGNetV2*
timm
kimm.models.InceptionNeXt*
timm
kimm.models.InceptionV3
timm
kimm.models.LCNet*
timm
kimm.models.MobileNetV2*
timm
kimm.models.MobileNetV3*
timm
kimm.models.MobileOne*
timm
kimm.models.MobileViT*
timm
kimm.models.MobileViTV2*
timm
kimm.models.RegNet*
timm
kimm.models.RepVGG*
timm
kimm.models.ResNet*
timm
kimm.models.TinyNet*
timm
kimm.models.VGG*
timm
kimm.models.VisionTransformer*
keras
kimm.models.Xception
Beta Was this translation helpful? Give feedback.
All reactions