-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw10.tex
executable file
·134 lines (116 loc) · 6.16 KB
/
hw10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
\documentclass{homework}
\title{Homework 10}
\author{Kevin Evans}
\studentid{11571810}
\date{November 5, 2020}
\setclass{Math}{301}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{multirow}
\usepackage{amsthm}
\newtheorem*{prop}{Proposition}
\renewcommand\qedsymbol{$\blacksquare$}
\begin{document}
\maketitle
\begin{enumerate}
\item \begin{minipage}[t]{\linewidth}
\begin{prop}
For a positive integer $n$,
\[\sum_{i = 1}^n i = \frac{n(n+1)}{2}\]
\end{prop}
\begin{proof} This will be proven with induction. For the base case, we will check $n=1$. \begin{enumerate}
\item[(1)] For $n=1$, $$ \frac{1(1+1)}{2} = 1$$
\item[(2)] If we suppose the proposition is true for $k$, we will show it is also true for $k+1$, \begin{align*}
\sum_{i=1}^{k + 1} i & = \sum_{i=1}^k i + (k+1) \\
& = \frac{ k(k+1) }{2} + (k+1) = \frac{ k(k+1) }{2} + \frac{2(k+1)}{2} \\
& = \frac{(k+1)(k+2)}{2} \\
& = \frac{(k+1)\left[(k+1) + 1\right]}{2}
\end{align*}
This shows the proposition is also true for $k+1$.
\end{enumerate}
\end{proof}
\end{minipage}
\item \begin{minipage}[t]{\linewidth}
\begin{prop}
For any nonnegative integer $n$,
\[ 2^{n+1} > \sum_{i=0}^n 2^i\]
\end{prop}
\begin{proof} This will be proven with induction. For the base case, we will check $n=0$. \begin{enumerate}
\item[(1)] For $n=0$, it holds true that \[2^{0+1} > 2^0\]
\item[(2)] If we suppose the proposition is true for $k$, we will show it is also true for $k+1$. On the LHS, the $k+1$ term is
\begin{align*}
2^{k+2} & = 2\left( 2^{k+1} \right)
\intertext{From the proposition,}
2(2^{k+1}) & > 2\sum_{i = 0}^k 2^i && \text{(assuming the hypothesis)} \\
2(2^{k+1}) & > \sum_{i = 0}^k 2^{i+1} && \text{(moving the 2 into the indexed term)} \\
2(2^{k+1}) & > \sum_{i = 0}^{k + 1} 2^{i} && \text{(changing the indices)}
\intertext{Substituting the original expression, it follows by induction that}
2^{k+2} & > \sum_{i = 0}^{k + 1} 2^{i}
\end{align*}
\end{enumerate}
\end{proof}
\end{minipage}
\item \begin{minipage}[t]{\linewidth}
\begin{prop}
For any positive integer $n$, there exists a sequence $b_i \in \{0, 1\}$ such that $b_k = 1$ and $$n = \sum_{i=0}^k b_i 2^i $$
\end{prop}
\begin{proof} This will be shown using strong induction. For the base case, we will check $n=1$. \begin{enumerate}
\item[(1)] For $n=1$, it holds true that $1 = (1) 2^0$.
\item[(2)] Suppose $m \ge 1$ and every integer on between $1$ and $m$ can be written as the sum of powers of two. If we consider $m+1$, we can divide this into two cases: one where $m+1$ is even and one where $m+1$ is odd.
\underline{Case 1: $m+1$ is even}. Then $m+1$ can be expressed as $m + 1 = 2a$, where $a \in \mathbb{Z}$. We know that $m+1 \ge 2$ and thus $m+1 > a$. Then, $1 \le a \le m$, and by the inductive hypothesis, $a = \sum_{i=0}^l c_i 2^i$ where $l \in \mathbb{Z}$.
Multiplying this by $2$ to find $m+1$, \begin{align*}
m+1 & = 2a = 2\left(\sum_{i=0}^l b_i 2^i\right) \\
m+1 & = \sum_{i=0}^{l+1} b_i 2^{i}
\end{align*}
Therefore $m+1$ can be written as the sum of powers of two.
\underline{Case 2: $m+1$ is odd}. If $m+1$ is odd, then $m$ must be even. This means that in the sum representing $m$, the last coefficient $b_0 = 0$. Then $m+1$ is the same sum but now with $b_0 = 1$,
\begin{align*}
m & = b_0 2^0 + b_1 2^1 + \dots \\
& = 0 \times 2^0 + b_1 2^1 + \dots \\
m+1 & = 1 \times 2^0 + b_1 2^1 + \dots
\end{align*}
Therefore $m+1$ can be written as the sum of powers of two.
\end{enumerate}
\end{proof}
\end{minipage}
\item \begin{minipage}[t]{\linewidth}
\begin{prop}
The representation of a positive integer as a sum of powers of $2$ is unique.
\end{prop}
\begin{proof} It will be shown by strong induction that the representation of a positive integer as a sum of powers of $2$ is unique. For the base case, we will check $n=1$.
\begin{enumerate}
\item[(1)] For $n=1$, there is a single way to represent this as $1 = (1)2^0$.
\item[(2)] Suppose $m \ge 1$ and every integer between $1$ and $m$ can be written as a sum of powers of two. If we consider $m+1$ and its representation as the sum of powers of $2$, then assume there are actually two different ways of representing it, \begin{align*}
m+1 & = \sum_{i = 0}^k b_i 2^i = \sum_{i = 0}^\ell c_i 2^i
\end{align*}
where $b_k = 1, c_\ell = 1, b_i, c_i \in \{0, 1\}$.
\begin{enumerate}
\item[(a)] If we suppose that one sum has more terms than the other, perhaps $k > \ell$. Then there would exist a term $2^{\ell + 1}$ (or greater) in $\sum_{i=0}^k b_i 2^i$. However, by Problem 2 (which finds $2^{n+1} > \sum_{i=0}^n 2^i$), this would lead to a contradiction: it means $$ \sum_{i = 0}^k b_i 2^i > \sum_{i = 0}^\ell c_i 2^i$$
which cannot be right, as we have stated these two values are equal to $m+1$. Therefore, it must be true that $k=\ell$ for $m+1$.
\item[(b)] Next, if we factor out a $2$ from each side, \begin{align*}
2 \left(\sum_{i = 1}^k b_i 2^{i - 1} \right) + b_0 & = 2\left(\sum_{i = 1}^\ell c_i 2^{i - 1}\right) + c_0
\end{align*}
Then $b_0$ and $c_0$ must be equal, as the modulus $2$ of both sides must be equal. If this operation is continued $k$ times, in each iteration, $b_i = c_i$ for all values. Therefore, the coefficients $b_i = c_i$ for all $i$.
\end{enumerate}
Since there is a single way of representing a number by the powers of $2$, it is unique.
\end{enumerate}
\end{proof}
\end{minipage}
\end{enumerate}
\end{document}