-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw14.tex
executable file
·60 lines (51 loc) · 1.56 KB
/
hw14.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
\documentclass{homework}
\title{Homework 14}
\author{Kevin Evans}
\studentid{11571810}
\date{December 10, 2020}
\setclass{Math}{301}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{multirow}
\usepackage{amsthm}
\newtheorem*{prop}{Proposition}
\renewcommand\qedsymbol{$\blacksquare$}
\begin{document}
\maketitle
\begin{enumerate}
\item \begin{enumerate}
\item \begin{minipage}[t]{\linewidth}
\begin{prop}
If both $f$ and $g$ are injective, then $g\circ f$ is injective.
\end{prop}
\begin{proof}
Suppose $f: A \to B$ and $g : B \to C$ are injective. Then for all $a, a' \in A$ where $a \ne a'$, $f(a) \ne f(a')$, i.e. a different input to $f$ results in a different output. Then since $g$ is injective too, $g(f(a)) \ne g(f(a'))$. Therefore $g \circ f$ is injective.
\end{proof}
\end{minipage}
\item \begin{minipage}[t]{\linewidth}
\begin{prop}
If both $f$ and $g$ are surjective, then $g\circ f$ is surjective.
\end{prop}
\begin{proof}
Suppose $f: A \to B$ and $g : B \to C$ are surjective.
\end{proof}
\end{minipage}
\end{enumerate}
\end{enumerate}
\end{document}