-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw2.tex
executable file
·102 lines (87 loc) · 3.49 KB
/
hw2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
\documentclass{homework}
\title{Homework 2}
\author{Kevin Evans}
\studentid{11571810}
\date{September 1, 2020}
\setclass{Math}{301}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{multirow}
\begin{document}
\maketitle
\begin{enumerate}
\item \begin{enumerate}
\item If the determinate of a matrix is not zero, then a matrix is invertable.
\item If $\abs{r} < 1$, then a geometric series with common ratio $r$ converges.
\item If a function is continuous, then it is intergrable.
\item If a function is differentiable, then the function is continuous.
\item If I'm wearing a hat, then it is sunny.
\end{enumerate}
\item $\begin{aligned}[t]
\text{Let } P & = \text{The Curiosity Rover is on Mars.} \\
Q & = \text{The Curiosity Rover is a good robot.} \\
R & = \text{The Mars Polar Lander is a good robot.}
\end{aligned}$
And we know that $P$, $Q \vee R$, and $R \implies \neg P$ are all true. From $R \implies \neg P$,
\begin{center}
\begin{tabular}{cc|cl}
$R$ & $\neg P$ & $R \implies \neg P$ & \\
\midrule
T & T & T & \\
T & F & F & \\
F & T & T & \\
F & F & T & ($*$)
\end{tabular}
\end{center}
As $\neg P$ is false, the bottom row ($*$) intersects with $R \implies P$. So, $R$ must be false.
\begin{enumerate}
\item True. Since $Q \vee R$ is true and $R$ is false, $Q$ must be true.
\item False. Shown above, $R$ is false.
\end{enumerate}
\item If $P$ is false, then $P \wedge Q$ is false. If the original statement is true, then both sides of $\iff$ must be equal, i.e. $(R \implies S)$ must be false too. For an implication to be false, then \begin{align*}
R & = \text{true} \\
S & = \text{false}
\end{align*}
It's impossible to know what $Q$ is as $P$ is false and $P \wedge Q$ will always be false regardless of $Q$'s value.
\item For the implication $((P \wedge Q) \vee R) \implies (R \vee S)$ to be false, then \begin{align*}
((P \wedge Q) \vee R) & = \text{true} \\
(R \vee S) & = \text{false}
\intertext{From the latter, both $R$ and $S$ must be false, so}
(P \wedge Q) & = \text{true}
\intertext{This is only the case when both are true, thus}
P = Q & = \text{true} \\
R = S & = \text{false}
\end{align*}
\item Building out a truth table, we can see both statements are equivalent, \begin{center}
\begin{tabular}{cc|c|c}
$P$ & $Q$ & $(P \vee Q) \wedge \neg (P \wedge Q)$ & $(P \wedge \neg Q) \vee (Q \wedge \neg P)$ \\ \midrule
T & T & F & F \\
T & F & T & T \\
F & T & T & T \\
F & F & F & F
\end{tabular}
\end{center}
\item Applying de Morgan's law to the second statement, \begin{align*}
\neg \left( \left( P \wedge Q\right) \wedge \neg R\right) & = \neg \left( P \wedge Q\right) \vee R
\intertext{For the two original statements to be equivalent, then it would mean}
\neg \left( P \wedge Q\right) & \stackrel{?}{=} \left(P \implies Q\right)
\intertext{...which is certainly false. These statements are \underline{not} equivalent.}
\end{align*}
\end{enumerate}
\end{document}