-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw3.tex
executable file
·81 lines (68 loc) · 2.99 KB
/
hw3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
\documentclass{homework}
\title{Homework 3}
\author{Kevin Evans}
\studentid{11571810}
\date{September 10, 2020}
\setclass{Math}{301}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{slashed}
\usepackage{relsize}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{booktabs}
\usepackage{boldline}
\usepackage{changepage}
\usepackage{physics}
\usepackage[inter-unit-product =\cdot]{siunitx}
\usepackage{setspace}
\usepackage[makeroom]{cancel}
%\usepackage{pgfplots}
\usepackage{enumitem}
\usepackage{times}
\usepackage{multirow}
\begin{document}
\maketitle
\begin{enumerate}
\item[1.] \begin{enumerate}
\item All integers are a multiple of 2.
\item It's false, since $1 \in \mathbb{Z}$ and $1$ is not a multiple of $2$.
\item There is an integer that is not a multiple of 2.
\item $\exists \; x \in \mathbb{Z} : (x \text{ is not a multiple of }2)$
\end{enumerate}
\item[2.] \begin{enumerate}
\item $\left(\sqrt{2} < x\right) \wedge \left(x < \sqrt{3}\right)$
\item $\begin{aligned}[t]
& \neg \left[\exists x \in \mathbb{Q}, \left(\sqrt{2} < x\right) \wedge \left(x < \sqrt{3}\right)\right] \\
& = \forall x \in \mathbb{Q}, \left(\sqrt{2} \ge x\right) \vee \left( x \ge \sqrt{3}\right)
\end{aligned}$
\item All rational numbers are equal to or less than $\sqrt{2}$, or equal to or greater than $\sqrt{3}$.
\end{enumerate}
\item[3.] \begin{enumerate}
\item $\begin{aligned}[t]
E(x) & = x \text{ is even.} \\
O(x) & = x \text{ is odd.} \\
\forall x \in \mathbb{Z}, & \: E(x) \oplus O(x) \qquad \text{where $\oplus$ is an XOR operator.}
\end{aligned}$
\item $\begin{aligned}[t]
\exists x \in \mathbb{Z}, \left( E(x) \wedge O(x) \right) \vee \left(\neg E(x) \wedge \neg O(x)\right)
\end{aligned}$
\item There is an integer that is either: both an odd and even integer, or is neither an odd or even integer.
\end{enumerate}
\item[4.] \begin{enumerate}
\item $\forall x \in \mathbb{Z}, E(x) \implies O(x + 1)$
\item $\exists x \in \mathbb{Z}, E(x) \wedge E(x+1)$
\item There is an integer that even and if you add one to that integer, it's also even.
\end{enumerate}
\item[5.] \begin{enumerate}
\item ...$\forall \: x_1, x_2 \in \mathbb{R}, x_1 \le x_2 \implies f(x_1) \ge f(x_2)$
\item ...$\exists \: x_1, x_2 \in \mathbb{R}, x_1 \le x_2 \wedge f(x_1) < f(x_2)$
\end{enumerate}
\item[6.] I'm going to define $\mathbb{R}^+$ as the set of positive real integers. \begin{enumerate}
\item ...$\forall x \in \mathbb{R}, \varepsilon \in \mathbb{R^+}, \exists \delta \in \mathbb{R^+}, \left(\abs{x - a} < \delta\right) \implies \left(\abs{f(x) - f(a)} < \varepsilon \right)$
\item ...$\exists x \in \mathbb{R}, \varepsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, \left(\abs{x-a} < \delta\right) \wedge \left(\abs{f(x) - f(a)} \ge \varepsilon\right)$
\end{enumerate}
\end{enumerate}
\end{document}