-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_linear_SSL_main.py
180 lines (120 loc) · 7.73 KB
/
train_linear_SSL_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from argparse import ArgumentParser
from scipy.sparse import data
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.Get_dataset import CIFAR10_module, Causal_3Dident
#from models.barlow_twins_linear_classifier import BT_classifier
from models.SSL_linear_classifier import SSL_encoder_linear_classifier
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from models.models_mean_std import supervised_huy, barlow_twins_yao, simCLR_bolts
from copy import deepcopy
def main():
parser = ArgumentParser()
# model args
parser = SSL_encoder_linear_classifier.add_model_specific_args(parser)
args = parser.parse_args()
# create the encoder + linear classification layer on top
model = SSL_encoder_linear_classifier(**args.__dict__)
# dataset specific modifications
if args.model == 'barlow_twins':
# normalization used in yao's barlow twins (the stds are off I should invetigate and retrain the model if necessary!)
mean= simCLR_bolts[0]
std= simCLR_bolts[1]
elif args.model == 'simCLR':
# taken from pl_bolts.transforms.dataset_normalizations.cifar10_normalization
mean= simCLR_bolts[0]
std= simCLR_bolts[1]
elif args.model =='supervised':
mean = supervised_huy[0]
std = supervised_huy[1]
elif args.model == 'simsiam':
mean= simCLR_bolts[0]
std= simCLR_bolts[1]
# prepare the dataset
# normalize the dataset same way as during unsupervised training
if args.dataset == 'cifar10':
dataset = CIFAR10_module(mean, std, batch_size=args.batch_size, augment_train=False)
dataset.prepare_data()
dataset.setup()
elif args.dataset == '3dident':
dataset = Causal_3Dident(data_dir='/home/kiarash_temp/adversarial-components/3dident_causal',
augment_train=False, batch_size=args.batch_size, num_workers=16)
dataset.setup()
else:
raise NotImplemented('the dataset you asked for is not supported.')
# determin how to save the model
if not args.regress_latents:
checkpoint_callback = ModelCheckpoint(
monitor="val_acc",
filename="fixed_{model}_linear_layer_trained-{{epoch:02d}}-{{val_acc:.3f}}".format(model=args.model),
save_top_k=1,
mode="max"
)
else:
checkpoint_callback = ModelCheckpoint(
monitor="val_R^2/6", # spotlight is the 6th elment
filename="fixed_{model}_linear_layer_trained-{{epoch:02d}}-{{val_R^2/6:.3f}}".format(model=args.model),
save_top_k=1,
mode="max"
)
# and train it on the train set.
# Initialize a trainer
trainer = Trainer(
check_val_every_n_epoch= 1,
gpus= [args.device],
max_epochs= args.max_epochs,
progress_bar_refresh_rate= 1,
default_root_dir= f'./{args.dataset}_last_layer_training_standard_logs/{args.model}_with_linear_layer_logs',
callbacks= [checkpoint_callback],
precision = 16,
fast_dev_run=args.fast_dev_run
)
# Train the model
trainer.fit(model, dataset.train_dataloader(), dataset.test_dataloader())
# Do not train regression here ! it takes a long time and I couldn't get the r2 measure record all of features.
if __name__ == '__main__':
# barlow_twins_model_path='./model_checkpoints/barlow_twins_unsupervised/0.0078125_128_128_cifar10_epoch_795.pth'
# simCLR_model_path='./bolt_self_supervised_training/lightning_logs_simCLR_every5th_checkpoint/version_0/checkpoints/epoch=792-step=139567.ckpt'
#supervised_path='./huy_Supervised_models_training_CIFAR10/cifar10/resnet18/version_3/checkpoints/best_val_acc_acc_val=88.37.ckpt'
# simsiam path = './bolt_self_supervised_training/simsiam/simsiam_resnet18_logs_and_chekpoints/lightning_logs/version_0/checkpoints/epoch=733-best_val_loss_val_loss=-0.9130538105964661.ckpt'
# barlow twins command : python train_linear_SSL_main.py barlow_twins 1 ./model_checkpoints/barlow_twins_unsupervised/0.0078125_128_128_cifar10_epoch_795.pth
# simCLR command: python train_linear_SSL_main.py simCLR 1 ./bolt_self_supervised_training/lightning_logs_simCLR_every5th_checkpoint/version_0/checkpoints/epoch=792-step=139567.ckpt
# supervised command: python train_linear_SSL_main.py supervised 1 './huy_Supervised_models_training_CIFAR10/cifar10/resnet18/version_3/checkpoints/best_val_acc_acc_val=88.37.ckpt'
# simsiam: python train_linear_SSL_main.py simsiam 3 './bolt_self_supervised_training/simsiam/simsiam_resnet18_logs_and_chekpoints/lightning_logs/version_0/checkpoints/epoch=733-best_val_loss_val_loss=-0.9130538105964661.ckpt'
# (simclr all train used)
# python train_linear_SSL_main.py simCLR 3 ./bolt_self_supervised_training/simclr/simCLR_resnet18_logs_and_chekpoints/lightning_logs/Using_all_of_train_set_400epochs/checkpoints/epoch=380_best_val_loss=5.988133430480957_online_val_acc=0.88.ckpt
# supervised no augmentation
# python train_linear_SSL_main.py supervised 5 /home/kiarash_temp/adversarial-components/huy_Supervised_models_training_CIFAR10/cifar10/resnet18/no_augmentations/checkpoints/best_val_acc_acc_val=82.27.ckpt
# simclr supervised
# python train_linear_SSL_main.py simCLR 5 ./bolt_self_supervised_training/simclr/simCLR_resnet18_logs_and_chekpoints/lightning_logs/using_labels_version_4/epoch=462-best_val_loss_val_loss=3.899880886077881.ckpt
# 3dident regression (doesn't work !)
# python train_linear_SSL_main.py --dataset 3dident --regress_latents --batch_size 128 simCLR 2 ./bolt_self_supervised_training/simclr/simCLR_resnet18_logs_and_chekpoints/lightning_logs/version_4/checkpoints/epoch=411_best_val_loss=4.885046482086182_online_val_acc=1.00.ckpt
# 3dident classify spotlight
# python train_linear_SSL_main.py --dataset 3dident --classify_spotlight --batch_size 512 simCLR 6 ./bolt_self_supervised_training/simclr/simCLR_resnet18_logs_and_chekpoints/lightning_logs/version_4/checkpoints/epoch=411_best_val_loss=4.885046482086182_online_val_acc=1.00.ckpt
# python train_linear_SSL_main.py --dataset 3dident --classify_spotlight --batch_size 512 --max_epochs 20 simCLR 6 ./bolt_self_supervised_training/simclr/3dident_simCLR_resnet18_logs_and_chekpoints/lightning_logs/small_arch/checkpoints/epoch=93_best_val_loss=6.664149761199951_online_val_acc=1.00.ckpt
# python train_linear_SSL_main.py simCLR 4 /home/kiarash_temp/adversarial-components/bolt_self_supervised_training/simclr/cifar10_simCLR_resnet18_logs_and_chekpoints/lightning_logs/version_2/checkpoints/epoch=507_best_val_loss=5.973425388336182_online_val_acc=0.90.ckpt
main()
""" for name, module in model.named_children():
print()
print(name)
print(module) """
# save state dict of encoder to compare to after training (cheking it is fixed)
#before_train_encoder_dict = deepcopy(model.encoder.state_dict())
'''print('before encoder.training')
print(model.encoder.training)'''
'''print('after encoder.training')
print(model.encoder.training)
'''
""" # check if backend is fixed
print('after encoder.training')
print(model.encoder.training)
#after_dict = model.encoders[0].cpu().state_dict()
after_dict = model.encoder.state_dict()
diff = 0
for k,v in before_train_encoder_dict.items():
#print(k)
diff += (v-after_dict[k]).pow_(2).sum()
#print((v-after_dict[k]).pow_(2).sum())
print("diff is : " , diff) """