This repository has been archived by the owner on Jan 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSelf-Signed-Certificate.ino
197 lines (157 loc) · 6.93 KB
/
Self-Signed-Certificate.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/**
Example for the ESP32 HTTP(S) Webserver
IMPORTANT NOTE:
To run this script, you need to
1) Enter your WiFi SSID and PSK below this comment
This script will install an HTTPS Server on your ESP32 with the following
functionalities:
- Show simple page on web server root
- 404 for everything else
In contrast to the other examples, the certificate and the private key will be
generated on the ESP32, so you do not need to provide them here.
(this means no need to run create_cert.sh)
*/
// TODO: Configure your WiFi here
#define WIFI_SSID "<your ssid goes here>"
#define WIFI_PSK "<your pre-shared key goes here>"
// We will use wifi
#include <WiFi.h>
#include <HTTPS_Server_Generic.h>
// The HTTPS Server comes in a separate namespace. For easier use, include it here.
using namespace httpsserver;
SSLCert * cert;
HTTPSServer * secureServer;
// Declare some handler functions for the various URLs on the server
void handleRoot(HTTPRequest * req, HTTPResponse * res);
void handle404(HTTPRequest * req, HTTPResponse * res);
void setup()
{
// For logging
Serial.begin(115200);
while (!Serial && millis() < 5000);
///////////////////////////////////////////////
Serial.print("\nStarting Self-Signed-Certificate on ");
Serial.println(ARDUINO_BOARD);
Serial.println(HTTPS_SERVER_GENERIC_VERSION);
///////////////////////////////////
Serial.println("Creating a new self-signed certificate.");
Serial.println("This may take up to a minute, so be patient ;-)");
// First, we create an empty certificate:
cert = new SSLCert();
// Now, we use the function createSelfSignedCert to create private key and certificate.
// The function takes the following parameters:
// - Key size: 1024 or 2048 bit should be fine here, 4096 on the ESP might be "paranoid mode"
// (in generel: shorter key = faster but less secure)
// - Distinguished name: The name of the host as used in certificates.
// If you want to run your own DNS, the part after CN (Common Name) should match the DNS
// entry pointing to your ESP32. You can try to insert an IP there, but that's not really good style.
// - Dates for certificate validity (optional, default is 2019-2029, both included)
// Format is YYYYMMDDhhmmss
int createCertResult = createSelfSignedCert(
*cert,
KEYSIZE_2048,
"CN=myesp32.local,O=FancyCompany,C=DE",
"20190101000000",
"20300101000000"
);
// Now check if creating that worked
if (createCertResult != 0)
{
Serial.printf("Creating certificate failed. Error Code = 0x%02X, check SSLCert.hpp for details", createCertResult);
while (true)
delay(500);
}
Serial.println("Creating the certificate was successful");
// If you're working on a serious project, this would be a good place to initialize some form of non-volatile storage
// and to put the certificate and the key there. This has the advantage that the certificate stays the same after a reboot
// so your client still trusts your server, additionally you increase the speed-up of your application.
// Some browsers like Firefox might even reject the second run for the same issuer name (the distinguished name defined above).
//
// Storing:
// For the key:
// cert->getPKLength() will return the length of the private key in byte
// cert->getPKData() will return the actual private key (in DER-format, if that matters to you)
// For the certificate:
// cert->getCertLength() and ->getCertData() do the same for the actual certificate data.
// Restoring:
// When your applications boots, check your non-volatile storage for an existing certificate, and if you find one
// use the parameterized SSLCert constructor to re-create the certificate and pass it to the HTTPSServer.
//
// A short reminder on key security: If you're working on something professional, be aware that the storage of the ESP32 is
// not encrypted in any way. This means that if you just write it to the flash storage, it is easy to extract it if someone
// gets a hand on your hardware. You should decide if that's a relevant risk for you and apply countermeasures like flash
// encryption if necessary
// We can now use the new certificate to setup our server as usual.
secureServer = new HTTPSServer(cert);
// Connect to WiFi
Serial.println("Setting up WiFi");
WiFi.begin(WIFI_SSID, WIFI_PSK);
while (WiFi.status() != WL_CONNECTED)
{
Serial.print(".");
delay(500);
}
///////////////////////////////////
Serial.print(F("HTTPS WiFiWebServer is @ IP : "));
Serial.println(WiFi.localIP());
Serial.print(F("To access, use https://"));
Serial.println(WiFi.localIP());
///////////////////////////////////////////////
// For every resource available on the server, we need to create a ResourceNode
// The ResourceNode links URL and HTTP method to a handler function
ResourceNode * nodeRoot = new ResourceNode("/", "GET", &handleRoot);
ResourceNode * node404 = new ResourceNode("", "GET", &handle404);
// Add the root node to the server
secureServer->registerNode(nodeRoot);
// Add the 404 not found node to the server.
secureServer->setDefaultNode(node404);
Serial.println("Starting server...");
secureServer->start();
if (secureServer->isRunning())
{
Serial.println("Server ready.");
}
}
void loop()
{
// This call will let the server do its work
secureServer->loop();
// Other code would go here...
delay(1);
}
void handleRoot(HTTPRequest * req, HTTPResponse * res)
{
// Status code is 200 OK by default.
// We want to deliver a simple HTML page, so we send a corresponding content type:
res->setHeader("Content-Type", "text/html");
// The response implements the Print interface, so you can use it just like
// you would write to Serial etc.
res->println("<!DOCTYPE html>");
res->println("<html>");
res->println("<head><title>Hello World!</title></head>");
res->println("<body>");
res->println("<h1>Hello World!</h1>");
res->print("<p>Your server is running for ");
// A bit of dynamic data: Show the uptime
res->print((int)(millis() / 1000), DEC);
res->println(" seconds.</p>");
res->println("</body>");
res->println("</html>");
}
void handle404(HTTPRequest * req, HTTPResponse * res)
{
// Discard request body, if we received any
// We do this, as this is the default node and may also server POST/PUT requests
req->discardRequestBody();
// Set the response status
res->setStatusCode(404);
res->setStatusText("Not Found");
// Set content type of the response
res->setHeader("Content-Type", "text/html");
// Write a tiny HTTP page
res->println("<!DOCTYPE html>");
res->println("<html>");
res->println("<head><title>Not Found</title></head>");
res->println("<body><h1>404 Not Found</h1><p>The requested resource was not found on this server.</p></body>");
res->println("</html>");
}