-
-
Notifications
You must be signed in to change notification settings - Fork 79
/
nodes.py
1002 lines (854 loc) · 44.1 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import torch
import json
from einops import rearrange
from contextlib import nullcontext
from .utils import log, check_diffusers_version, print_memory
check_diffusers_version()
from diffusers.schedulers import (
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
DDIMScheduler,
PNDMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
SASolverScheduler,
DEISMultistepScheduler,
LCMScheduler
)
scheduler_mapping = {
"DPM++": DPMSolverMultistepScheduler,
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
"CogVideoXDDIM": CogVideoXDDIMScheduler,
"CogVideoXDPMScheduler": CogVideoXDPMScheduler,
"SASolverScheduler": SASolverScheduler,
"UniPCMultistepScheduler": UniPCMultistepScheduler,
"HeunDiscreteScheduler": HeunDiscreteScheduler,
"DEISMultistepScheduler": DEISMultistepScheduler,
"LCMScheduler": LCMScheduler
}
available_schedulers = list(scheduler_mapping.keys())
from diffusers.video_processor import VideoProcessor
import folder_paths
import comfy.model_management as mm
script_directory = os.path.dirname(os.path.abspath(__file__))
if not "CogVideo" in folder_paths.folder_names_and_paths:
folder_paths.add_model_folder_path("CogVideo", os.path.join(folder_paths.models_dir, "CogVideo"))
if not "cogvideox_loras" in folder_paths.folder_names_and_paths:
folder_paths.add_model_folder_path("cogvideox_loras", os.path.join(folder_paths.models_dir, "CogVideo", "loras"))
class CogVideoEnhanceAVideo:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"weight": ("FLOAT", {"default": 1.0, "min": 0, "max": 100, "step": 0.01, "tooltip": "The feta Weight of the Enhance-A-Video"}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Start percentage of the steps to apply Enhance-A-Video"}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "End percentage of the steps to apply Enhance-A-Video"}),
},
}
RETURN_TYPES = ("FETAARGS",)
RETURN_NAMES = ("feta_args",)
FUNCTION = "setargs"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "https://github.com/NUS-HPC-AI-Lab/Enhance-A-Video"
def setargs(self, **kwargs):
return (kwargs, )
class CogVideoContextOptions:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"context_schedule": (["uniform_standard", "uniform_looped", "static_standard"],),
"context_frames": ("INT", {"default": 48, "min": 2, "max": 100, "step": 1, "tooltip": "Number of pixel frames in the context, NOTE: the latent space has 4 frames in 1"} ),
"context_stride": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context stride as pixel frames, NOTE: the latent space has 4 frames in 1"} ),
"context_overlap": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context overlap as pixel frames, NOTE: the latent space has 4 frames in 1"} ),
"freenoise": ("BOOLEAN", {"default": True, "tooltip": "Shuffle the noise"}),
}
}
RETURN_TYPES = ("COGCONTEXT", )
RETURN_NAMES = ("context_options",)
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, context_schedule, context_frames, context_stride, context_overlap, freenoise):
context_options = {
"context_schedule":context_schedule,
"context_frames":context_frames,
"context_stride":context_stride,
"context_overlap":context_overlap,
"freenoise":freenoise
}
return (context_options,)
class CogVideoTransformerEdit:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"remove_blocks": ("STRING", {"default": "15, 25, 37", "multiline": True, "tooltip": "Comma separated list of block indices to remove, 5b blocks: 0-41, 2b model blocks 0-29"} ),
}
}
RETURN_TYPES = ("TRANSFORMERBLOCKS",)
RETURN_NAMES = ("block_list", )
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "EXPERIMENTAL:Remove specific transformer blocks from the model"
def process(self, remove_blocks):
blocks_to_remove = [int(x.strip()) for x in remove_blocks.split(',')]
log.info(f"Blocks selected for removal: {blocks_to_remove}")
return (blocks_to_remove,)
class CogVideoXTorchCompileSettings:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("COMPILEARGS",)
RETURN_NAMES = ("torch_compile_args",)
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended"
def loadmodel(self, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit):
compile_args = {
"backend": backend,
"fullgraph": fullgraph,
"mode": mode,
"dynamic": dynamic,
"dynamo_cache_size_limit": dynamo_cache_size_limit,
}
return (compile_args, )
#region TextEncode
class CogVideoTextEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"prompt": ("STRING", {"default": "", "multiline": True} ),
},
"optional": {
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"force_offload": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("CONDITIONING", "CLIP",)
RETURN_NAMES = ("conditioning", "clip")
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, clip, prompt, strength=1.0, force_offload=True):
max_tokens = 226
load_device = mm.text_encoder_device()
offload_device = mm.text_encoder_offload_device()
clip.tokenizer.t5xxl.pad_to_max_length = True
clip.tokenizer.t5xxl.max_length = max_tokens
clip.cond_stage_model.to(load_device)
tokens = clip.tokenize(prompt, return_word_ids=True)
embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False)
if embeds.shape[1] > max_tokens:
raise ValueError(f"Prompt is too long, max tokens supported is {max_tokens} or less, got {embeds.shape[1]}")
embeds *= strength
if force_offload:
clip.cond_stage_model.to(offload_device)
return (embeds, clip, )
class CogVideoTextEncodeCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning_1": ("CONDITIONING",),
"conditioning_2": ("CONDITIONING",),
"combination_mode": (["average", "weighted_average", "concatenate"], {"default": "weighted_average"}),
"weighted_average_ratio": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
},
}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("conditioning",)
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, conditioning_1, conditioning_2, combination_mode, weighted_average_ratio):
if conditioning_1.shape != conditioning_2.shape:
raise ValueError("conditioning_1 and conditioning_2 must have the same shape")
if combination_mode == "average":
embeds = (conditioning_1 + conditioning_2) / 2
elif combination_mode == "weighted_average":
embeds = conditioning_1 * (1 - weighted_average_ratio) + conditioning_2 * weighted_average_ratio
elif combination_mode == "concatenate":
embeds = torch.cat((conditioning_1, conditioning_2), dim=-2)
else:
raise ValueError("Invalid combination mode")
return (embeds, )
#region ImageEncode
def add_noise_to_reference_video(image, ratio=None):
if ratio is None:
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device)
sigma = torch.exp(sigma).to(image.dtype)
else:
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None]
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
image = image + image_noise
return image
class CogVideoImageEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"start_image": ("IMAGE", ),
},
"optional": {
"end_image": ("IMAGE", ),
"enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}),
"noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, start_image, end_image=None, enable_tiling=False, noise_aug_strength=0.0, strength=1.0, start_percent=0.0, end_percent=1.0):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
vae_scaling_factor = vae.config.scaling_factor
if enable_tiling:
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling
enable_vae_encode_tiling(vae)
vae.to(device)
try:
vae._clear_fake_context_parallel_cache()
except:
pass
latents_list = []
start_image = (start_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W
if noise_aug_strength > 0:
start_image = add_noise_to_reference_video(start_image, ratio=noise_aug_strength)
start_latents = vae.encode(start_image).latent_dist.sample(generator)
start_latents = start_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W
if end_image is not None:
end_image = (end_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3)
if noise_aug_strength > 0:
end_image = add_noise_to_reference_video(end_image, ratio=noise_aug_strength)
end_latents = vae.encode(end_image).latent_dist.sample(generator)
end_latents = end_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W
latents_list = [start_latents, end_latents]
final_latents = torch.cat(latents_list, dim=1)
else:
final_latents = start_latents
final_latents = final_latents * vae_scaling_factor * strength
log.info(f"Encoded latents shape: {final_latents.shape}")
vae.to(offload_device)
return ({
"samples": final_latents,
"start_percent": start_percent,
"end_percent": end_percent
}, )
class CogVideoImageEncodeFunInP:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"start_image": ("IMAGE", ),
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}),
},
"optional": {
"end_image": ("IMAGE", ),
"enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}),
"noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}),
},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("image_cond_latents",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, start_image, num_frames, end_image=None, enable_tiling=False, noise_aug_strength=0.0):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
vae_scaling_factor = vae.config.scaling_factor
if enable_tiling:
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling
enable_vae_encode_tiling(vae)
vae.to(device)
try:
vae._clear_fake_context_parallel_cache()
except:
pass
if end_image is not None:
# Create a tensor of zeros for padding
padding = torch.zeros((num_frames - 2, start_image.shape[1], start_image.shape[2], 3), device=end_image.device, dtype=end_image.dtype) * -1
# Concatenate start_image, padding, and end_image
input_image = torch.cat([start_image, padding, end_image], dim=0)
else:
# Create a tensor of zeros for padding
padding = torch.zeros((num_frames - 1, start_image.shape[1], start_image.shape[2], 3), device=start_image.device, dtype=start_image.dtype) * -1
# Concatenate start_image and padding
input_image = torch.cat([start_image, padding], dim=0)
input_image = input_image * 2.0 - 1.0
input_image = input_image.to(vae.dtype).to(device)
input_image = input_image.unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W
B, C, T, H, W = input_image.shape
if noise_aug_strength > 0:
input_image = add_noise_to_reference_video(input_image, ratio=noise_aug_strength)
bs = 1
new_mask_pixel_values = []
for i in range(0, input_image.shape[0], bs):
mask_pixel_values_bs = input_image[i : i + bs]
mask_pixel_values_bs = vae.encode(mask_pixel_values_bs)[0]
mask_pixel_values_bs = mask_pixel_values_bs.mode()
new_mask_pixel_values.append(mask_pixel_values_bs)
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
masked_image_latents = masked_image_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W
mask = torch.zeros_like(masked_image_latents[:, :, :1, :, :])
#if end_image is not None:
# mask[:, -1, :, :, :] = 0
mask[:, 0, :, :, :] = vae_scaling_factor
final_latents = masked_image_latents * vae_scaling_factor
log.info(f"Encoded latents shape: {final_latents.shape}")
vae.to(offload_device)
return ({
"samples": final_latents,
"mask": mask
},)
#region Tora
from .tora.traj_utils import process_traj, scale_traj_list_to_256
from torchvision.utils import flow_to_image
class ToraEncodeTrajectory:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"tora_model": ("TORAMODEL",),
"vae": ("VAE",),
"coordinates": ("STRING", {"forceInput": True}),
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"enable_tiling": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("TORAFEATURES", "IMAGE", )
RETURN_NAMES = ("tora_trajectory", "video_flow_images", )
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, width, height, num_frames, coordinates, strength, start_percent, end_percent, tora_model, enable_tiling=False):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
try:
vae._clear_fake_context_parallel_cache()
except:
pass
if enable_tiling:
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling
enable_vae_encode_tiling(vae)
if len(coordinates) < 10:
coords_list = []
for coords in coordinates:
coords = json.loads(coords.replace("'", '"'))
coords = [(coord['x'], coord['y']) for coord in coords]
traj_list_range_256 = scale_traj_list_to_256(coords, width, height)
coords_list.append(traj_list_range_256)
else:
coords = json.loads(coordinates.replace("'", '"'))
coords = [(coord['x'], coord['y']) for coord in coords]
coords_list = scale_traj_list_to_256(coords, width, height)
video_flow, points = process_traj(coords_list, num_frames, (height,width), device=device)
video_flow = rearrange(video_flow, "T H W C -> T C H W")
video_flow = flow_to_image(video_flow).unsqueeze_(0).to(device) # [1 T C H W]
video_flow = (rearrange(video_flow / 255.0 * 2 - 1, "B T C H W -> B C T H W").contiguous().to(vae.dtype))
video_flow_image = rearrange(video_flow, "B C T H W -> (B T) H W C")
#print(video_flow_image.shape)
mm.soft_empty_cache()
# VAE encode
vae.to(device)
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor
log.info(f"video_flow shape after encoding: {video_flow.shape}") #torch.Size([1, 16, 4, 80, 80])
vae.to(offload_device)
tora_model["traj_extractor"].to(device)
#print("video_flow shape before traj_extractor: ", video_flow.shape) #torch.Size([1, 16, 4, 80, 80])
video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32))
tora_model["traj_extractor"].to(offload_device)
video_flow_features = torch.stack(video_flow_features)
#print("video_flow_features after traj_extractor: ", video_flow_features.shape) #torch.Size([42, 4, 128, 40, 40])
video_flow_features = video_flow_features * strength
tora = {
"video_flow_features" : video_flow_features,
"start_percent" : start_percent,
"end_percent" : end_percent,
"traj_extractor" : tora_model["traj_extractor"],
"fuser_list" : tora_model["fuser_list"],
}
return (tora, video_flow_image.cpu().float())
class ToraEncodeOpticalFlow:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"tora_model": ("TORAMODEL",),
"optical_flow": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("TORAFEATURES",)
RETURN_NAMES = ("tora_trajectory",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, optical_flow, strength, tora_model, start_percent, end_percent):
check_diffusers_version()
B, H, W, C = optical_flow.shape
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
try:
vae._clear_fake_context_parallel_cache()
except:
pass
video_flow = optical_flow * 2 - 1
video_flow = rearrange(video_flow, "(B T) H W C -> B C T H W", T=B, B=1)
print(video_flow.shape)
mm.soft_empty_cache()
# VAE encode
vae.to(device)
video_flow = video_flow.to(vae.dtype).to(vae.device)
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor
vae.to(offload_device)
video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32))
video_flow_features = torch.stack(video_flow_features)
video_flow_features = video_flow_features * strength
log.info(f"video_flow shape: {video_flow.shape}")
tora = {
"video_flow_features" : video_flow_features,
"start_percent" : start_percent,
"end_percent" : end_percent,
"traj_extractor" : tora_model["traj_extractor"],
"fuser_list" : tora_model["fuser_list"],
}
return (tora, )
#region FasterCache
class CogVideoXFasterCache:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_step": ("INT", {"default": 15, "min": 0, "max": 1024, "step": 1}),
"hf_step": ("INT", {"default": 30, "min": 0, "max": 1024, "step": 1}),
"lf_step": ("INT", {"default": 40, "min": 0, "max": 1024, "step": 1}),
"cache_device": (["main_device", "offload_device", "cuda:1"], {"default": "main_device", "tooltip": "The device to use for the cache, main_device is on GPU and uses a lot of VRAM"}),
"num_blocks_to_cache": ("INT", {"default": 42, "min": 0, "max": 1024, "step": 1, "tooltip": "Number of transformer blocks to cache, 5b model has 42 blocks, tradeoff between speed and memory"}),
},
}
RETURN_TYPES = ("FASTERCACHEARGS",)
RETURN_NAMES = ("fastercache", )
FUNCTION = "args"
CATEGORY = "CogVideoWrapper"
def args(self, start_step, hf_step, lf_step, cache_device, num_blocks_to_cache):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
if cache_device == "cuda:1":
device = torch.device("cuda:1")
fastercache = {
"start_step" : start_step,
"hf_step" : hf_step,
"lf_step" : lf_step,
"cache_device" : device if cache_device != "offload_device" else offload_device,
"num_blocks_to_cache" : num_blocks_to_cache,
}
return (fastercache,)
#region Sampler
class CogVideoSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("COGVIDEOMODEL",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"num_frames": ("INT", {"default": 49, "min": 1, "max": 1024, "step": 1}),
"steps": ("INT", {"default": 50, "min": 1}),
"cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"scheduler": (available_schedulers,
{
"default": 'CogVideoXDDIM'
}),
},
"optional": {
"samples": ("LATENT", {"tooltip": "init Latents to use for video2video process"} ),
"image_cond_latents": ("LATENT",{"tooltip": "Latent to use for image2video conditioning"} ),
"denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"context_options": ("COGCONTEXT", ),
"controlnet": ("COGVIDECONTROLNET",),
"tora_trajectory": ("TORAFEATURES", ),
"fastercache": ("FASTERCACHEARGS", ),
"feta_args": ("FETAARGS", ),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, model, positive, negative, steps, cfg, seed, scheduler, num_frames, samples=None,
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None, fastercache=None, feta_args=None):
mm.unload_all_models()
mm.soft_empty_cache()
model_name = model.get("model_name", "")
supports_image_conds = True if (
"I2V" in model_name or
"interpolation" in model_name.lower() or
"fun" in model_name.lower() or
"img2vid" in model_name.lower()
) else False
if "fun" in model_name.lower() and not ("pose" in model_name.lower() or "control" in model_name.lower()) and image_cond_latents is not None:
assert image_cond_latents["mask"] is not None, "For fun inpaint models use CogVideoImageEncodeFunInP"
fun_mask = image_cond_latents["mask"]
else:
fun_mask = None
if image_cond_latents is not None:
assert supports_image_conds, "Image condition latents only supported for I2V and Interpolation models"
image_conds = image_cond_latents["samples"]
image_cond_start_percent = image_cond_latents.get("start_percent", 0.0)
image_cond_end_percent = image_cond_latents.get("end_percent", 1.0)
if ("1.5" in model_name or "1_5" in model_name) and not "fun" in model_name.lower():
image_conds = image_conds / 0.7 # needed for 1.5 models
else:
if not "fun" in model_name.lower():
assert not supports_image_conds, "Image condition latents required for I2V models"
image_conds = None
if samples is not None:
if len(samples["samples"].shape) == 5:
B, T, C, H, W = samples["samples"].shape
latents = samples["samples"]
if len(samples["samples"].shape) == 4:
B, C, H, W = samples["samples"].shape
latents = None
if image_cond_latents is not None:
B, T, C, H, W = image_cond_latents["samples"].shape
height = H * 8
width = W * 8
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
pipe = model["pipe"]
dtype = model["dtype"]
scheduler_config = model["scheduler_config"]
if not model["cpu_offloading"] and model["manual_offloading"]:
pipe.transformer.to(device)
generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed)
if scheduler in scheduler_mapping:
noise_scheduler = scheduler_mapping[scheduler].from_config(scheduler_config)
pipe.scheduler = noise_scheduler
else:
raise ValueError(f"Unknown scheduler: {scheduler}")
if tora_trajectory is not None:
pipe.transformer.fuser_list = tora_trajectory["fuser_list"]
if context_options is not None:
context_frames = context_options["context_frames"] // 4
context_stride = context_options["context_stride"] // 4
context_overlap = context_options["context_overlap"] // 4
else:
context_frames, context_stride, context_overlap = None, None, None
if negative.shape[1] < positive.shape[1]:
target_length = positive.shape[1]
padding = torch.zeros((negative.shape[0], target_length - negative.shape[1], negative.shape[2]), device=negative.device)
negative = torch.cat((negative, padding), dim=1)
if fastercache is not None:
pipe.transformer.use_fastercache = True
pipe.transformer.fastercache_counter = 0
pipe.transformer.fastercache_start_step = fastercache["start_step"]
pipe.transformer.fastercache_lf_step = fastercache["lf_step"]
pipe.transformer.fastercache_hf_step = fastercache["hf_step"]
pipe.transformer.fastercache_device = fastercache["cache_device"]
pipe.transformer.fastercache_num_blocks_to_cache = fastercache["num_blocks_to_cache"]
log.info(f"FasterCache enabled for {pipe.transformer.fastercache_num_blocks_to_cache} blocks out of {len(pipe.transformer.transformer_blocks)}")
else:
pipe.transformer.use_fastercache = False
pipe.transformer.fastercache_counter = 0
if not isinstance(cfg, list):
cfg = [cfg for _ in range(steps)]
else:
assert len(cfg) == steps, "Length of cfg list must match number of steps"
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
autocast_context = torch.autocast(
mm.get_autocast_device(device), dtype=dtype
) if any(q in model["quantization"] for q in ("e4m3fn", "GGUF")) else nullcontext()
with autocast_context:
latents = model["pipe"](
num_inference_steps=steps,
height = height,
width = width,
num_frames = num_frames,
guidance_scale=cfg,
latents=latents if samples is not None else None,
fun_mask = fun_mask,
image_cond_latents=image_conds,
denoise_strength=denoise_strength,
prompt_embeds=positive.to(dtype).to(device),
negative_prompt_embeds=negative.to(dtype).to(device),
generator=generator,
device=device,
context_schedule=context_options["context_schedule"] if context_options is not None else None,
context_frames=context_frames,
context_stride= context_stride,
context_overlap= context_overlap,
freenoise=context_options["freenoise"] if context_options is not None else None,
controlnet=controlnet,
tora=tora_trajectory if tora_trajectory is not None else None,
image_cond_start_percent=image_cond_start_percent if image_cond_latents is not None else 0.0,
image_cond_end_percent=image_cond_end_percent if image_cond_latents is not None else 1.0,
feta_args=feta_args,
)
if not model["cpu_offloading"] and model["manual_offloading"]:
pipe.transformer.to(offload_device)
if fastercache is not None:
for block in pipe.transformer.transformer_blocks:
if (hasattr, block, "cached_hidden_states") and block.cached_hidden_states is not None:
block.cached_hidden_states = None
block.cached_encoder_hidden_states = None
print_memory(device)
mm.soft_empty_cache()
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
additional_frames = getattr(pipe, "additional_frames", 0)
return ({
"samples": latents,
"additional_frames": additional_frames,
},)
class CogVideoControlNet:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"controlnet": ("COGVIDECONTROLNETMODEL",),
"images": ("IMAGE", ),
"control_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"control_start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"control_end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("COGVIDECONTROLNET",)
RETURN_NAMES = ("cogvideo_controlnet",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, controlnet, images, control_strength, control_start_percent, control_end_percent):
control_frames = images.permute(0, 3, 1, 2).unsqueeze(0) * 2 - 1
controlnet = {
"control_model": controlnet,
"control_frames": control_frames,
"control_weights": control_strength,
"control_start": control_start_percent,
"control_end": control_end_percent,
}
return (controlnet,)
#region VideoDecode
class CogVideoDecode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"samples": ("LATENT",),
"enable_vae_tiling": ("BOOLEAN", {"default": True, "tooltip": "Drastically reduces memory use but may introduce seams"}),
"tile_sample_min_height": ("INT", {"default": 240, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile height, default is half the height"}),
"tile_sample_min_width": ("INT", {"default": 360, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile width, default is half the width"}),
"tile_overlap_factor_height": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
"tile_overlap_factor_width": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
"auto_tile_size": ("BOOLEAN", {"default": True, "tooltip": "Auto size based on height and width, default is half the size"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "decode"
CATEGORY = "CogVideoWrapper"
def decode(self, vae, samples, enable_vae_tiling, tile_sample_min_height, tile_sample_min_width, tile_overlap_factor_height, tile_overlap_factor_width,
auto_tile_size=True, pipeline=None):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
latents = samples["samples"]
additional_frames = samples.get("additional_frames", 0)
try:
vae.enable_slicing()
except:
pass
vae.to(device)
if enable_vae_tiling:
if auto_tile_size:
vae.enable_tiling()
else:
vae.enable_tiling(
tile_sample_min_height=tile_sample_min_height,
tile_sample_min_width=tile_sample_min_width,
tile_overlap_factor_height=tile_overlap_factor_height,
tile_overlap_factor_width=tile_overlap_factor_width,
)
else:
vae.disable_tiling()
latents = latents.to(vae.dtype).to(device)
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / vae.config.scaling_factor * latents
try:
vae._clear_fake_context_parallel_cache()
except:
pass
try:
frames = vae.decode(latents[:, :, additional_frames:]).sample
except:
mm.soft_empty_cache()
log.warning("Failed to decode, retrying with tiling")
vae.enable_tiling()
frames = vae.decode(latents[:, :, additional_frames:]).sample
vae.disable_tiling()
vae.to(offload_device)
mm.soft_empty_cache()
video_processor = VideoProcessor(vae_scale_factor=8)
video_processor.config.do_resize = False
video = video_processor.postprocess_video(video=frames, output_type="pt")
video = video[0].permute(0, 2, 3, 1).cpu().float()
return (video,)
class CogVideoXFunResizeToClosestBucket:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE", ),
"base_resolution": ("INT", {"min": 64, "max": 1280, "step": 64, "default": 512, "tooltip": "Base resolution, closest training data bucket resolution is chosen based on the selection."}),
"upscale_method": (s.upscale_methods, {"default": "lanczos", "tooltip": "Upscale method to use"}),
"crop": (["disabled","center"],),
},
}
RETURN_TYPES = ("IMAGE", "INT", "INT")
RETURN_NAMES = ("images", "width", "height")
FUNCTION = "resize"
CATEGORY = "CogVideoWrapper"
def resize(self, images, base_resolution, upscale_method, crop):
from comfy.utils import common_upscale
from .cogvideox_fun.utils import ASPECT_RATIO_512, get_closest_ratio
B, H, W, C = images.shape
# Find most suitable height and width
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
closest_size, closest_ratio = get_closest_ratio(H, W, ratios=aspect_ratio_sample_size)
height, width = [int(x / 16) * 16 for x in closest_size]
log.info(f"Closest bucket size: {width}x{height}")
resized_images = images.clone().movedim(-1,1)
resized_images = common_upscale(resized_images, width, height, upscale_method, crop)
resized_images = resized_images.movedim(1,-1)
return (resized_images, width, height)
class CogVideoLatentPreview:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"min_val": ("FLOAT", {"default": -0.15, "min": -1.0, "max": 0.0, "step": 0.001}),
"max_val": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}),
"r_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}),
"g_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}),
"b_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}),
},
}
RETURN_TYPES = ("IMAGE", "STRING", )
RETURN_NAMES = ("images", "latent_rgb_factors",)
FUNCTION = "sample"
CATEGORY = "PyramidFlowWrapper"
def sample(self, samples, seed, min_val, max_val, r_bias, g_bias, b_bias):
mm.soft_empty_cache()
latents = samples["samples"].clone()
print("in sample", latents.shape)
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
#[[0.0658900170023352, 0.04687556512203313, -0.056971557475649186], [-0.01265770449940036, -0.02814809569100843, -0.0768912512529372], [0.061456544746314665, 0.0005511617552452358, -0.0652574975291287], [-0.09020669168815276, -0.004755440180558637, -0.023763970904494294], [0.031766964513999865, -0.030959599938418375, 0.08654669098083616], [-0.005981764690055846, -0.08809119252349802, -0.06439852368217663], [-0.0212114426433989, 0.08894281999597677, 0.05155629477559985], [-0.013947446911030725, -0.08987475069900677, -0.08923124751217484], [-0.08235967967978511, 0.07268025379974379, 0.08830486164536037], [-0.08052049179735378, -0.050116143175332195, 0.02023752569687405], [-0.07607527759162447, 0.06827156419895981, 0.08678111754261035], [-0.04689089232553825, 0.017294986041038893, -0.10280492336438908], [-0.06105783150270304, 0.07311850680875913, 0.019995735372550075], [-0.09232589996527711, -0.012869815059053047, -0.04355587834255975], [-0.06679931010802251, 0.018399815879067458, 0.06802404982033876], [-0.013062632927118165, -0.04292991477896661, 0.07476243356192845]]
latent_rgb_factors =[[0.11945946736445662, 0.09919175788574555, -0.004832707433877734], [-0.0011977028264356232, 0.05496505130267682, 0.021321622433638193], [-0.014088548986590666, -0.008701477861945644, -0.020991313281459367], [0.03063921972519621, 0.12186477097625073, 0.0139593690235148], [0.0927403067854673, 0.030293187650929136, 0.05083134241694003], [0.0379112441305742, 0.04935199882777209, 0.058562766246777774], [0.017749911959153715, 0.008839453404921545, 0.036005638019226294], [0.10610119248526109, 0.02339855688237826, 0.057154257614084596], [0.1273639464837117, -0.010959856130713416, 0.043268631260428896], [-0.01873510946881321, 0.08220930648486932, 0.10613256772247093], [0.008429116376722327, 0.07623856561000408, 0.09295712117576727], [0.12938137079617007, 0.12360403483892413, 0.04478930933220116], [0.04565908794779364, 0.041064156741596365, -0.017695041535528512], [0.00019003240570281826, -0.013965147883381978, 0.05329669529635849], [0.08082391586738358, 0.11548306825496074, -0.021464170006615893], [-0.01517932393230994, -0.0057985555313003236, 0.07216646476618871]]
import random
random.seed(seed)
latent_rgb_factors = [[random.uniform(min_val, max_val) for _ in range(3)] for _ in range(16)]
out_factors = latent_rgb_factors
print(latent_rgb_factors)
latent_rgb_factors_bias = [0.085, 0.137, 0.158]
#latent_rgb_factors_bias = [r_bias, g_bias, b_bias]
latent_rgb_factors = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)
latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
print("latent_rgb_factors", latent_rgb_factors.shape)
latent_images = []
for t in range(latents.shape[2]):
latent = latents[:, :, t, :, :]
latent = latent[0].permute(1, 2, 0)
latent_image = torch.nn.functional.linear(
latent,
latent_rgb_factors,
bias=latent_rgb_factors_bias
)
latent_images.append(latent_image)
latent_images = torch.stack(latent_images, dim=0)
print("latent_images", latent_images.shape)
latent_images_min = latent_images.min()
latent_images_max = latent_images.max()
latent_images = (latent_images - latent_images_min) / (latent_images_max - latent_images_min)
return (latent_images.float().cpu(), out_factors)
NODE_CLASS_MAPPINGS = {
"CogVideoSampler": CogVideoSampler,
"CogVideoDecode": CogVideoDecode,
"CogVideoTextEncode": CogVideoTextEncode,
"CogVideoImageEncode": CogVideoImageEncode,
"CogVideoTextEncodeCombine": CogVideoTextEncodeCombine,
"CogVideoTransformerEdit": CogVideoTransformerEdit,
"CogVideoContextOptions": CogVideoContextOptions,
"CogVideoControlNet": CogVideoControlNet,
"ToraEncodeTrajectory": ToraEncodeTrajectory,
"ToraEncodeOpticalFlow": ToraEncodeOpticalFlow,
"CogVideoXFasterCache": CogVideoXFasterCache,
"CogVideoXFunResizeToClosestBucket": CogVideoXFunResizeToClosestBucket,
"CogVideoLatentPreview": CogVideoLatentPreview,
"CogVideoXTorchCompileSettings": CogVideoXTorchCompileSettings,
"CogVideoImageEncodeFunInP": CogVideoImageEncodeFunInP,
"CogVideoEnhanceAVideo": CogVideoEnhanceAVideo,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CogVideoSampler": "CogVideo Sampler",
"CogVideoDecode": "CogVideo Decode",
"CogVideoTextEncode": "CogVideo TextEncode",
"CogVideoImageEncode": "CogVideo ImageEncode",
"CogVideoTextEncodeCombine": "CogVideo TextEncode Combine",
"CogVideoTransformerEdit": "CogVideo TransformerEdit",
"CogVideoContextOptions": "CogVideo Context Options",
"ToraEncodeTrajectory": "Tora Encode Trajectory",
"ToraEncodeOpticalFlow": "Tora Encode OpticalFlow",
"CogVideoXFasterCache": "CogVideoX FasterCache",
"CogVideoXFunResizeToClosestBucket": "CogVideoXFun ResizeToClosestBucket",
"CogVideoLatentPreview": "CogVideo LatentPreview",
"CogVideoXTorchCompileSettings": "CogVideo TorchCompileSettings",
"CogVideoImageEncodeFunInP": "CogVideo ImageEncode FunInP",