Skip to content

Latest commit

 

History

History
64 lines (47 loc) · 1.67 KB

README.md

File metadata and controls

64 lines (47 loc) · 1.67 KB

Local Modern Data Stack

Configure local environment

Commands below assume that the current working directory is the root of this repository.

  1. Install the conda environment using the environment.yml:
conda env create -f environment.yml
  1. Activate the environment with conda activate local-mds.
  2. Add the following lines to ~/.dbt/profiles.yml:
data_mart:
  outputs:
   dev:
     type: duckdb
     path: <path-to-data-mart.duckdb>
  target: dev
  1. Run src/generate-raw-data.py to create storage and ingest raw data.
  2. Run dbt run --project-dir data_mart/ to build the data mart.
  3. Add the following lines to ~/.metricflow/config.yml:
model_path: <path-to-the-metrics-directory>
dwh_schema: main_marts
dwh_dialect: duckdb
dwh_database: <path-to-data-mart.duckdb>

and verify connection with mf health-check.

Try metricflow using its CLI

Start with mf validate-configs to verify that everything is ok with the setup in metrics. The command helps debug in case it is not and thus should be used before any changes are committed to the repository.

mf query --metrics order_revenue_usd --dimensions metric_time__year,order_type --order metric_time__year
mf query --metrics order_revenue_usd --dimensions metric_time__year,site_id__site_region --order metric_time__year
mf query --metrics order_revenue_usd --dimensions metric_time__year,site_id__account_id__account_region --order metric_time__year
mf query --metrics order_monthly_revenue_usd --dimensions booked_date

Try metricflow Python API inside a streamlit app

streamlit run src/app.py