-
Notifications
You must be signed in to change notification settings - Fork 0
/
BMS_Chebyshev.nb
2971 lines (2929 loc) · 152 KB
/
BMS_Chebyshev.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 152378, 2963]
NotebookOptionsPosition[ 149458, 2901]
NotebookOutlinePosition[ 149832, 2917]
CellTagsIndexPosition[ 149789, 2914]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[TextData[StyleBox["Best mean-square approximation polynomial\nChebyshev\n\
KZ",
FontFamily->"CMU Serif",
FontWeight->"Medium"]], "Subsubsection",
CellChangeTimes->{{3.794922041594387*^9, 3.7949220642875085`*^9}, {
3.7949220949614267`*^9, 3.794922095159244*^9}, {3.7971881709811754`*^9,
3.7971881717412806`*^9}, {3.7971885018487034`*^9, 3.7971885074568176`*^9}, {
3.797237953176259*^9, 3.797237953886715*^9}},
TextAlignment->Center,
FontColor->RGBColor[
0.5, 0, 0.5],ExpressionUUID->"f07ff82c-1362-43d2-9e38-ae63cf686ce4"],
Cell[BoxData[{
RowBox[{
RowBox[{"BMSchebyshev2", "[", "n_", "]"}], ":=",
RowBox[{
SqrtBox[
RowBox[{"2", "/", "Pi"}]],
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "-", "1"}]]}], ")"}],
RowBox[{"n", "+", "1"}]], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "-", "1"}]]}], ")"}],
RowBox[{"n", "+", "1"}]]}],
RowBox[{"2",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "-", "1"}]]}]]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"aCoefficient", "[",
RowBox[{"fun_", ",", "n_"}], "]"}], ":=",
RowBox[{
SubsuperscriptBox["\[Integral]",
RowBox[{"-", "1"}], "1"],
RowBox[{"fun", "*",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["x", "2"]}]], "*",
RowBox[{"BMSchebyshev2", "[", "n", "]"}],
RowBox[{"\[DifferentialD]", "x"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"approximant", "[",
RowBox[{"fun_", ",", "n_"}], "]"}], ":=",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{"N", "@",
RowBox[{"BMSchebyshev2", "[", "k", "]"}]}], "*",
RowBox[{"aCoefficient", "[",
RowBox[{"fun", ",", "k"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "n"}], "}"}]}], "]"}], "//",
"FullSimplify"}]}]}], "Input",
CellChangeTimes->{{3.794922137804615*^9, 3.7949221426886063`*^9}, {
3.794923449413291*^9, 3.794923452426345*^9}, {3.7949236008573627`*^9,
3.7949236850837245`*^9}, {3.794923778260174*^9, 3.7949237786528473`*^9},
3.794923809601536*^9, {3.7949238939974775`*^9, 3.794923900977405*^9}, {
3.7949239685499897`*^9, 3.794923979506354*^9}, {3.7949243516282043`*^9,
3.7949243575138397`*^9}, {3.794925382021181*^9, 3.7949253866482286`*^9}, {
3.7949255025387974`*^9, 3.7949255254536753`*^9}, {3.7971876159237385`*^9,
3.7971876807732286`*^9}, {3.7971877111988316`*^9, 3.797187833566504*^9}, {
3.797187889403176*^9, 3.7971878895125046`*^9}, {3.797188049168558*^9,
3.7971880632001247`*^9}, {3.7971882484624634`*^9,
3.7971882486499634`*^9}, {3.7971888331672935`*^9,
3.7971888406381683`*^9}, {3.7971890412504206`*^9, 3.797189244649276*^9}, {
3.7971893313435273`*^9, 3.7971894058660097`*^9}, {3.797190019093171*^9,
3.7971900223885803`*^9}, {3.7971902098808103`*^9, 3.797190249302619*^9}, {
3.7971903227333717`*^9,
3.797190324257668*^9}},ExpressionUUID->"42143c43-c844-489b-904c-\
24197cf17f16"]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[{
StyleBox["Test",
IgnoreSpellCheck->True],
" 1"
}], "Subsubsection",
CellChangeTimes->{{3.7949257818617764`*^9, 3.794925800653006*^9}},
FontFamily->"CMU Serif",
FontColor->RGBColor[
0.5, 0, 0.5],ExpressionUUID->"90152f75-4422-4238-bc50-14255e978690"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"polynomial", "=",
RowBox[{"approximant", "[",
RowBox[{
SuperscriptBox["x", "2"], ",", "2"}], "]"}]}]], "Input",
CellChangeTimes->{{3.7949254124867415`*^9, 3.7949254258047333`*^9}, {
3.794925478120637*^9, 3.794925481705883*^9}, {3.7949315107516165`*^9,
3.794931522243678*^9}, 3.797187874544877*^9},
CellLabel->"In[19]:=",ExpressionUUID->"1baa7de2-1eaf-4063-a6da-3ccd1ff1c6c6"],
Cell[BoxData[
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"1.`", " ",
SuperscriptBox["x", "2"]}]}]], "Output",
CellChangeTimes->{{3.7971878776766863`*^9, 3.7971878928681555`*^9}, {
3.7971880548931274`*^9, 3.7971880713861413`*^9}, 3.797188266466701*^9,
3.797188846713869*^9, 3.7971890534467916`*^9, 3.7971892504461184`*^9,
3.7971894109032564`*^9, 3.7971900287717285`*^9, 3.7971902599668865`*^9},
CellLabel->"Out[19]=",ExpressionUUID->"cebce69e-0e41-463d-b20e-59e6412c7c12"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
SuperscriptBox["x", "2"], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<\!\(\*SuperscriptBox[\(x\), \(2\)]\)\>\"", "}"}]}]}],
"]"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"polynomial", "/.",
RowBox[{"x", "\[Rule]", "k"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "8"}], ",", "8"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Approximant\>\"", "}"}]}]}], "]"}]}], "}"}],
"]"}]], "Input",
CellChangeTimes->{{3.794924151408663*^9, 3.7949241758426075`*^9}, {
3.794924215780755*^9, 3.7949242230465965`*^9}, {3.794924256987507*^9,
3.794924273808598*^9}, {3.794924313319188*^9, 3.7949243176521134`*^9}, {
3.7949244151912932`*^9, 3.794924418752349*^9}, {3.7949244773212414`*^9,
3.7949244788522897`*^9}, {3.7949245146034746`*^9, 3.794924516975458*^9}, {
3.794924654588639*^9, 3.794924684482316*^9}, {3.7949251855496025`*^9,
3.7949251868225927`*^9}, {3.7949252653650546`*^9, 3.794925265704017*^9}, {
3.7949253966682186`*^9, 3.7949254087480783`*^9}, {3.7949254725946355`*^9,
3.794925473796607*^9}, {3.7949255590548143`*^9, 3.794925563608343*^9}, {
3.7949261330624475`*^9, 3.7949261390434127`*^9}, {3.797187928084709*^9,
3.7971879297146163`*^9}, {3.797188077216446*^9, 3.7971880796723204`*^9}},
CellLabel->"In[20]:=",ExpressionUUID->"e3be932e-3aa4-434e-9f0e-020c79e51e33"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJw1WHk01W3UNWfKlDITN1KKQpTUeSQks8QtGkxF9VIImSpjSoN5SpJShlCi
eOX54Zq9ZCZE5imu8SK6X99a3/fXWfufvfba66yz9tnSdq7mjkwMDAwCjAwM
/zv9x40W6HQSQamo6KfTyWjMd8dy7waJcA94HCi3SkbGfAO0z2skIp1z1c6Y
SkY7j9zcdF0kEfExOZ1pg2RU8TCKfXCMROS6RIdblZMRu2KXJPEfiSg6Spb4
E0hGMR6XDe4lkwiJI2Ub6lvIKJvR/TWDOonQLP+ddHGbFWJ11FMWuSBD0JsO
XInbdhZt66668SpSmkitf/A14/QZZF6ZZL+nfidhlFwgbvTCDPnOHbvxbFiK
MAnQltCoMUFfvJKu5ZlIEiFR5WeVigyRcdTZnX8SxQm87XG17TN9pJfy1fjU
jCjhM7dToTpDF2XU3Ol0txYhSl1jraeETqKLwTHbm98JEcuqr5V3BWihgMvM
uVzbdhAcwib1nh7HEcN+KawdIkjYHFA7e9dMA31/lBiW3SFAVBWfuDSuoIbE
OZ0yl07wE0WjvCKXU5XR9UN7WXvFeQneQdlLTEgR2av/eFdZyUXoXz1Wv0VI
Hu311qC7vGYnVJv43BbXZFBa/xnKHS1WYiuTZcy0pjhSHlFeb1dlJWy6lIMv
iIkjyhT/gQPyrER7YL7r8JoYGqM1J4/xsBJqNk+OKHwWQ3sFDN3P9LEQLcLt
CVnKYuij7kmZ/V4shF1xWIjTflFEyVO9N5jDTPyOfyr086AwGr+/XVNPmImY
rZeWrPIURJz+eXPRnEzEgu6TnjYrQaTorZ8+uMFIqEc4cq0fFkSeLv6cPj8Z
CX83i9aI39sQm/Vod04WI7H+XuVXw/1taJdq4W2BY4zEp0GaZX6UALIbs8jr
t2UgDh+KX+ev5kOhP2ft9lowEDt6bIJ4s/hQVt+DHV66DISy7uPAXU/40EJr
qT+fAgMh76c4EmPJh5ju6ieETtAxU+6Ik2QLL4KDky1mW+mY+ozO3y7Ng0pi
5XUmLDfxhKo9y60xTsRuPW7PqLmJOdlPc6oUciLLnRmBotKb+FXYMwOZYE60
kEUiDKc38MEIzXsPZDjRHkLy6Ie7G7gpi++juy0HSpgSPOjz7jfmOp6pXjW+
Bd0GRgnu9TUcWJpcb7GDFVWwEEdlB9awkaS3ZtkUC+KrDzh/nLKGn+77NGmB
WVCOxUb8zSdr2MPYYIXDmQWNONMEOmTWcNnb5a6oMmZkHvOL/YXBKjbJ1/gq
5caEDkz2LCmlrOAJZW4pwxU6eFD37xEKXsFbzcOUAvPo8IV2/8KfayvY6Pip
32zOdNBi21vdeHgF7wpIpmz0/QFzkk+8c/syFk8Ok0ys3YTbF0Q10rmWMTrt
OReT+xtKWs7f3eGziE/5v2dNLKTBn+7cgs3Li3gYhgIyvGlwYpBpYkRvESc2
2xQwadKgYTbLtGD7IraxJBm/rVyBPq7f0qYfFvA+xpXTaZ3LQNdJpoRPzGN6
wwdbMtcSnCzp5di0pGJHtSDmtjwq5Ga9OVJzlIrnZHXq//GmgnCyq3PkTio+
H5Ar4ahFhU4aW5RB+xxOaZttb303B7K+lnwp67M40JKiHrn5CyruL3MjvV/Y
N1+ttKJuCuLswm+08/3Cqdlvf4RfmQJnbYlGp+8zOND7qignyxTwseo8ivxn
Bj8Ja+s/pDUJlx7EcAxHT+MCnwsxGpRx2HiiwhY6OIn3Fx4mVmdG4JtrjaNo
1iS2bYzzMosdgXRT66pc90lsUah9yv74CJwWCAruYpvE9zbCD32MGobE2Fam
Pfsn8NilWtjUHgK157foDXfGMLEsLPcsagBuZuat8m8bxgrMDs62XzvhAI9L
0InBIby5Z99c38lOmHfbx+P+fginDhxUSP6vA9w0M0ntekPYiLZcNTDUDreb
XxnH+f3EVt2XQ8PF22BxSkH/UOMAVqkIdCxLaAaPT+8uxl0ZwG8mKYe5vzXB
ir+sB41hABcqBnoPcDTBKp9UavGhH/gdv8uxHSGNsKEmsHwstQ+PaXD1UxLr
gC1o9aWuWw+uFbV2l9OkQJjh7aK33D2YVdyEpyG5Eth3LDSwv+3GAxpl25c3
K4Azc3qlvrcLO7dsvdZTVw68zT8MTXQ68fvKEdNqehk8S7C2yx/owAupAcZX
xr+CgF23F79PB/b4zCPL314Kgsstr9py27FUAv+FsNISEBarWrUSbsNyO1+t
LtcVQeKIFk/xx1as3vnr60xPIYjmlpFEjVpxYI2SzezsJ5DQ+mLcd78FV1vH
kQTkC0C7yVK/vLMZr8b2/fv5fR7o2pp6BHE144LCrg5zyVw4taSfqoOa8KAB
TmNOzAFD0WPLdZmNOKr3jElGTiZYXiGltfrVYZsHUYxUw9fw8Jb7g6jCWvy2
cpHPTjAdvvpVuprP1uC7/f9eDxlNg13R9sdbL1VjfI5xC6GfCuQXBbJRCVW4
ibJ+T1EuBR5lMm81b6HgtZnySPr2ZFjA6b0tJypxtkexV51SPMg1LFZE+lZg
lfZJw4pzsXCuUzvL7FM57qKOf5GIjwZiZti7RZbAvrZGZzcMnsHE3FVC5msZ
pl1z5qKHPgYTNvanrxS/YuXHbYn1zx+CpMqpfa/4S/Al5AMfNEMgRH9iXTro
CzZtKbJsrA6EmUsP6tKWirB/35PkHK97cMZTPkH6SiFurGQRf/3CD0oiaq+k
dRVg4UoZmzvJ3iCd7nRIWv8j7i/yonWPesCDYnaWtJJ8LJrKPFvhfwt+pJq9
0SLn4jRaxF2X6hvwvjHyhNbRbMyYdK/n+r6r4LvWMoAk32Fz2aFJ//12oC8n
4I8Y3+DdKva2+tHWIHTGXBSNpOGnv/qtCUYLaKDvcr37JAUXLTqFlhsagNO5
N5kBFvFYMP8/xbNMWsBSIDviLxqJb+1st/U6pQxIxPDYOhGCxdKoju+iJYCa
kOgwn+iGC33U9eVfLh/3Y4qp0j18DnaYbHlsNlh5XDHJvkZQ7S6sOt19R7rF
Az9EPsxy8UaAtdzUknWSPJxR6S4N1YqBhnv6Kv2vj0BRj1VgmG8SrCdV8yZO
6cBWYppEOf8Ssrm/KT36bAoQnR1K8fq7FykJJxfzrODWleuTlJgMKGA4Vh38
4xK8OqJgWPUhEyhJF7+npjlAO/d0blVTDsi84GYXmHMGtsEs/urpPHB7KD+T
0OUKz88d0rAP/gDflc5pJ+13h0PasdeHBQpgiafj+kKpJzTtW35un/YJQofC
5toTfYCBoZBuX/YZHqnoB4u/uA+Jk4IHRwyLgZN72bifIRiU2zzsHHpLoOqi
pp79w1BwyFCtclj9+vfOpBBl/BGw+TRmZSQUg63qZ60Y3qfQoLke/fEhAVsO
q3kLiUaCg9z5KmWRCuDNtpju8Y6BA2KcP9wGKwDuCW8x0YmDTd6SlY9vK+Gp
QFaxnGwCxK2JyKuoVUG4i9rwpuRzqGnseahyphYWGNfT3/i/Aifv7zXWCnXQ
8ml593pDOrDv6mUJZq6HT9lVU0Wyb+C0b19Ae0EDPHMc2uf8+y007hlwuy3Y
DBEcvOn5Srlwo2MgL2WmGRL6ciT0evIgFN1csbP7Bh13nk7L1OTD7pmbKo80
WmBhBZiPP/4ITtpu73unWsE4PCl79EIRHE5caJizbIPpQI0Rs8ufgX3ObYq5
sg0iXpzUdHP6AplJ7rv3JbdD99H4083hJTA175HmZ9AJkTxqg+t8GG689IqV
yOmBU5zvaY8SKKC5Qis4KPwdFIWMee31qoDb0LtVJ/g77Dj0Wk1wrQre07x5
XWx6YTrd9ROLYw3MGvuEl3H3Q4ZR0A3JS/XwJaCsLE9tEPInjK+KunyDl5l/
/iu+MQhKtJqbln3f4EH78f7KV3/xE7FAukELkPfi3108PyH/rHlpglIrrHXg
wwzjP+Hr6T9Pxre0g8b+8o+m8cOw2mjyfmWjCw61d8aV1Q3DE7Msd8E73XDA
d8Zn38Yw3HV8LHFzpRvk6oS02W1HwOvoL7GfSz2wzdGlDe8dhZLUbZWZDH0w
81xsSbFsDMpf+/dP7RmEce2D3c+pY/DLdq5v4tYgDE3plnKSxqHmimxTSMkg
9Bx2Cx4LG4dQvR8hz41+QnV7reALswlQcAw6fcx3CFK5PQ9tHZ2EHfzJ8oZL
I5BU8EjEV2gKSPpmJ4/ojkLc+bTNCf0pGKhtMKtKGIWId41VlNwpuJi69UQJ
jIH3SZKln/c0hLyjeAnFjoO53zfPaa5fcEeB4XDqhSlg8tze5yBChaU7nawL
ylQ4fzmr9YsqFQy4WS9JXaPCx9NQx21KBX5dR4GsNCrYSTkXfQqlwlxeSVgX
/zxU1JY+Y1miwrRNcU7UyjwEiTnovG6ahxkxtsHwlkVgKf+YOxy0CGyK/dO+
/9HAJlvvjXrqIlzORY8s+FbhU2xf8qOSRVDo7Ah+eGYVHK6xhavMLwK/eGwo
T+8qVG07bx90cQmk71+leM6uQegVRmHSkWU4mW+9p1ZuA7Zwm963m10BsxZk
+NmFAZF3nyfUOGiw5p1trRXLgLJOONA5d9GA/mDo6uq/DMj4jrd/wTkakIYK
PX9xMKK4sZd3WKpoUOU9/8/iW0YkVz5/KyN5FXzUSytcZpiQjme03dSpdUhb
T2UlxbOioMFObbf0TRiPf0m9786FfhQb/ONdugndeUPG1DQupBFNxAV0bP7N
FU7fQr5xIapO1uTDLX/gbRA6JqfIjS5m+z9Nv/4HeDSkyjSnuZGG567edhU6
1LEl2hA3eNAa65FiMTsGtMELbJF/83x+cqhpwAIjSpTf8vyttCBq2BY6zsvA
hEp8N2tJSBCNPQoJSNvKhOZFvNeKLgoicb/gHIo8E3qhvu4g81wQPbAJZOf6
+xkt0w5e2Sq8HV2WCCDiG5hQUoQrv6rgDsSXevvAh9fMiGAlcVEkhJHrKwe+
EUtW5KN+/dHsbXF08VqSRNh9duTcxLBqSZFB4WaeR1Sec6GKqeKRZ627EYtg
7NjddR6UEl1HkDf3o66GEGowLz+q/p4XwXFQGZ31tVNLqhRALx6LgBujGrrB
NS3TdF4QgeqnfLbRI0gquzqObWo7+nkt1DCf+Tjy/aJ9hjdZCO0yVXLocNZC
NzNuFKkpiSCaopQcV6s24mZSt1McFUX7zEtwe5Iu0vnHInZvtDhKtq21UArW
R8LFEq46uyRR6hV5IwUHQxTl9iDyQJcUys0dVYzNNUHmoSb7U4p2osfj/yRc
vG2G9loHn33tL41yTDnauyTPoM4xjlfRZ2XQbfnAobNMZ1GT3aiWgBQJ9a1a
FGz5bol+srxdjZUhoazd1+ddhizRUoZTnogcCemtVZR0TVkikelpcen9JDQe
rD73/rclcnBfoCkdJaG2Y6oDNySs0HoQ/b2RFQkZqfn1qtpaIbk3IqLhT0mI
oqWr82vSCh3R6/3GHU1CZ+qfTYcsWCHDyedhz+JI6MOyuMTO31bo1v6dy/Ep
f/lU16XPcZNRaaHct4xsEqqwqP3Yr0hG5tUqoZQaEjohVkA94EFGjk7Lmqca
SOjjNyGDIT8y8ub8vNjQREJU+bIDsSFklGKsYdvW8ZevvDmFHkdGE51Ic2iY
hE7GstHHislo3Ztp0XGchKRtvQteV5DRVjFK5uQUCTU3KyzaN5CR8iU9ofl5
EoqKtRIc7yMjHUaOJo/lv/7MNC9njZIROb0+eHWVhCLHwu1uzpLRNZ2Io34b
f/UFhZxXp5HR//Uh6P/7kP8BcSByBQ==
"]]},
Annotation[#, "Charting`Private`Tag$221496#1"]& ]}}, {}}, {{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]],
LineBox[CompressedData["
1:eJw1mOk7FGzfgK1Zw4hKMWMp2bKFUvG7lCQ1M5FQZLtvKUqSRGRLkiJJIYoo
S9kpS8M11siWPbtk39cwkfd5j+N5Pp1/wHmcX04J2xtGdixMTEyCzExM/09F
2D6xuUmiO3ortG5uUtGNNamgNQaJbvyZ0rW4TEVZuSrSi8sk+u1sZ9fxSSpS
lSHbjkyS6Lbzuf92dlDRQUJAV10HiT4ReVC9LpOK0K/5b9GZJHqCz4GXG1ZU
ZPSw/uMBKxKdVrhh+rSUgu40Bly3LyHSX//o7nJ6REatrTwTpTZi9As37EUv
MgyQGP2G0EFRUbqAZKCuR7Y++uRYwc7fu4vuMzzsqxSih6yfqMx1+ovQX+h1
Rj420UWr4Z5BGHbSw+QunSZaH0OJfH0iUT+30+N5zz6yt0Ao1kDFpeWRMJ2h
l3na6e9R5H/Nxl32lBCdHlBzUKNAE3myfrjjMi1IV/ULtmL/VwPZ+DbuaU8h
0C/wO3+g3TuAXhQPR8U6CNBvcOeEb3Yoo6J+Gd40ST660D1WGRkbBSQlgI4Z
v+GhqykXhGm170M5ckEOg7846fwZ5+/KWUih/spscQ2NLXSB9PWHdW1ENKzw
QhV/ZqUnt9Zb7jfYiQjeqRqKzMx0MS9XA39BQRT4WaZaYIWJLjsXmMS5QUCM
meQLi1NMdJ3p6LqYUQIatEryKvjBRI/zL3UboxFQjk5i2bEsJjrvrh3Hd18h
ICP21xRTKyZ69p/uLyN0AbRPRKKeyXMTnxWKNpdb5UMKGrMK7xfXsVvyM+l4
FW50WdHHp7B3HfNN+E+zcXOjOGn+5vqv67hu7gPt4SAXEtyhdOd3zDrGBnG3
Rp9zoZUVp9KTuuvYS1lEl3+VE5UVzpyfiPiDzcoNbzBVcSAzrRlvJQ0Gfral
feaKOzsKV/duOi7OwEINcbRQY3ZUu59vjxk3AxdfiA9vVmZH2kTFGt++NRxY
fMI0b5wNSW1e39YcuIZnP0scH7BgQzP06WTXjlUseZP4vlOfFd3Xnf5e6L6C
uVnlw40OMqMy/Smq2j8rWCJ3tKRhBzNiIk82ZJBX8GOGc5/9KhPyOj9elyi5
gm2o48tzhUzI7fJwdUjdb8xPuBloqc2ErgT10m3Ef+OWsUJzSvRfOFNXn8VV
vYSPuJ1R6N1gQPD3OqWAnCX85ePkIcEqBlS31mb8jV3CI/x75P1CGXCityZt
8eYSRv9a03nFGaA9U5nSu3sJzx7lyOg6sQbKAiXx2TcWMTVj60vD2BUQNs4I
u7BjAROebUR9dF2CHOnHRSdYF3DGFN/TSyeX4Oya/ZDK7Dym7fMd09m1BMFv
JA5xf53Hokf9K9/SF+HvWER/kds8Zu1jkynhX4SRe56Kou1z2HEL29Or+fPg
RH0WVSw7i8ktLTXCF2YgZclg6gXzLGa6PBMiyDMDg9FsyKlzBofmV+90LZ4G
k6E7o8RHMxgiaf52UtMAHpYavmPTeE7/bTLz0iQIJMq3Hkuewg9uW6qTUsYh
53clf/WeCeyzmGw9az4MoR8SyrTXxnGzLuUqh/AwOFr63P5UP44NnULGXjQM
wZ6qQ90JbuP426l2g+3Hh+Dli49J96rHcKZk+Jt3Kr/grtozrQPXRvFJixz/
lT0/wWTs+lwqGsVqyiNLbsMDcCDWIFFceBSTe3J6ryUNwBQrGxdfyQheo23f
RpMdAMsWt9Yx/hEcjAi7vjv2wTEXC8c3uUPYuFfWc6q6C4jSmkThoCFsG5ym
WmTWBX86hZseWwzhqlHrDtfxTsjTadTwYB/CgbmWY1lbO0GacIzF2PQXngzN
kNG16QDurH3RXH9+Yur5OMkOtVZ43z0cMh7Qh1l0glcu7a6HLq/tca8P9OGJ
98W1u/zqgI94MstwsBerm8vnuI7Vgpt1SnMh9OKVz58+bX75BnrDDjuCGd1Y
+UBgpItbNYzNzMbLOXdiF+3tVbWHKkA0TDynj9iJX6fOFF8oKIezKobl4fU/
8H475uoAzXIouJUzzJD7gT3q2wRzUBk8WnWVqx1ux1W2h+9ftaWDHAsj19G8
FV9Ew68jRwrBMlGuksTdig9LDbSeFymEcF3z9paCFvwriapMoRYAI5C2emR7
Cw4Ne2I8XfEZanl8tHibmjBl+p7RcHsuMKVnUug+TditXSzdVSoX1CgDVq6K
Tfgfa1UF7Vs5EBum49/z+DuOMimM9BHNhh9ynKEXQhpwc9Q9fXf5dEDXr2aV
TtTjpDscJzRXP0JK5rdmWf16zBN1N9ip9gN4qIXsYLDU4eDXonPqD1Jgl7bg
21fuNfj8F6r0Ib134O97q5ylvRrnJEk5xOglwmRZ67DDgWqc0DLw24WcALST
kXJHZqqw2sL2SW+neLhkKJrX/U8FNggY8hJaj4apxWXN2xXlOGUr/3uWa1Hg
9bIR8+0tx3tLmrrNxl5CbLd/rc5IKfaIIN3W2hIBCt4Wht16pZha9KGjNjkc
vohrdLgm07EOR4N+2flnkFfbXEltKsF/FYrSG9JDoFUgsMk/vBhHZj8blTd+
DIvnNXs/naPhqwHR2he2PQLVgbil3e2FuFTosO6engAw3HuOiRpZgHWbmxdK
h/3B2WELr79Z/n96jilR4vSDzKVrUmNdediefs98RdETGjTFlXbH5mL9dJWE
XE53mPFuOUy5lIPfauhJCQjdhq0VgXp+xGx8w+JLH6+hC5gJur67gjOxnZZk
6jmfGxAZ2/WlQScddzNCuRqwA7RL67SoVXzA2vO0vqB/LoNQdvLEK70U/Fg8
TSbAwRbOHeFjYa55j0MJhQ0+qZcgvNJVxP50Iu4/F6vurmsK36ndyvX18XgL
J0vg/HtDIObdD7scH4sFLVp9OmJOQUz1Waz6PhJXP06tqnfXgZ29YjN/U8Ox
tTZH6eNKdZD/1ab58tJjrHQhWH3z8j6Q5nWOVLT3w7VBBxx6pgXBt1WmdXf5
dXxqpJZHP2NSW4G/14F9vzGsvEzU5L1ZqN0+7x8nsOoObJ7LczGerDBH3bdw
wyUQNLk1zEbukcDzud43R7UwkBTbYnz/qjL89faIiVN6Abt8OAvCth4FX4e0
ay1yr+CwMffP73YngNWkX4tDOg5izghrdhtSoFz80cPXAglgFiGYc8vOGAJe
SjofDH0Hmkui2XevXAQ9XppZE08y/BlsPcMcbQ0c/ud1HB+lQlVAzyd2m3+h
emVGlp0jDbys3j83eHIFgq8HCcYFZIDELaWRxl3XIWk+7J6oXxZ0WhW3G2y5
Cfb2cpc//82BOj858vwTN9CXvHPxvlYeuG/M9+e98gCZ3nLKWa9PECm8K31n
lxdMGF06OLGWD3Fb9TwHfvvBt60f5PMPFYI1m2Mhy8/78LH6NyngThFYnqIL
Lf96ANe0wziJyzTgLvkjaaAWDOS1nvWJAyVQOP2zLc3vCSjmyc7nu2BIdFx9
3z8aCqsRP6dkVukgLNvdcHHzGRRye7aV3S6H9aGi24SPkRC/X7glU7ICbJX9
y1hMoyHwbOb32MYKeDpPWQshxIDxy1+1brJVQG5b3eOS8wbmJM6UyfVWgzjh
ZFGBYSJ06I7gHcE18CeEzili+w5K7H2L2Q5+A1rl0TNVHu/hcXpeQV9YLYzb
aeVw4GSQ1hTLDNdtANarVoy9b9OA1yI/zWe+AdiLZ+amJ9Nh0dvww7U3jTBd
69vDop0J1oNlRlJe30EjxKSGaz0LFGVWyBttTSCk9Vxr7Gcu1ORa6WY/aoWT
khRij0URHK1UKN830ArOiR9Lk49+gaz2NZ03Gm3A5x/cLyJOg5drz+HxrzaI
Ma0Lnp8vhv8YPmyn1QFbVbOo+QN02PymrCIy3wn6zHYDjRyV4NKzkfn0ZBc4
pxMDxyMqYWT6m+KWN11gzClytV2qCuoE7BQWDbrh2LfGEdmTX+GVSfS++nc9
0OJ9ojQ/sQbUB5mJfmb9kPHBcMEprwEUi0znlVP7wZOly5p8rhGkw9MrBtb6
4Xmf0qeyxUbgeZumHk8egDZCAkdh7HdYP2vWszkzAF+cH1bMTzZBb1amLFYZ
BNqLlzVBWa3QFXtx246Lg8AzpKeUydsG7UHsG07+g+C91Mvx9mobNFibfye2
DEKnOZ0wurcdSgQ47ni7/gJzXZOg9eQOiHO2rNDKH4IoryomcnMXxFpwZbzo
HwLq9GCE3JFuiNLPi5zmGAY58ZGYlnfdECbO7fjabBjO1cWzBN3tAd/vnwgb
a8NwS3tU9a5SH9gob7WiHR2F37oW/GX9AyA192XtcNk49Fp+JuygDYFX/fGA
pelxCPftvZ/PMgztH2r5MkQmoKI171bjqWEItuuWkrg5Aa+EXOvsOodhrotB
5hCfBI4FNVuFvyNQUqmZ0HJvCn5L0YkSluNwMSbf4JrmLBD/Xe9OuTMDee7Q
ttduFg62ybJp1s8An8lXq/6wWah15/iApGahVKDD1WhsFmxNW5w+f58FoeOe
1NjTcyBfaDLzOmoOPAteefgz5iD16ac9pmwLcCqxs55itgC1coG5UZzLMPcg
43Ll9QW4KCd1bFpzGaKu3N88cn8BfDPRZU/HZRjbv19FNmMBnhpsOOk2LkNQ
gW8EK9si5JR7+T+K/g3V9fvMCzIXgacsIrv/0CqcXL09JsGxDLyzMsq0hD9w
gizIuvxpBaTZb3a8esaMQm245tdqVoBawEw0ymRGP24z9f/tXYH1zhFnyXpm
5PBmpohzyyq0X8k4wsfFgkJnv7mImqxCbJ6qnaA/C/rx7P7g8d+rcJNNgLPe
nRU5tC+VhmswQPWBWAiPBzt6atXhq5y/DqI8ARHpFVwocOoojNStw5GImqmc
SS7k7ZGwETO4Dn7GB4raBLmR0/Prdzn4NuDe3Vt5t2y4EeUrq2vfvxugZpEk
TWDiQXxKyvZPBP9Cgls7c/MxXhT6N4g8dn0T3Dmsnzv28aGvFLGtZwWZUdCZ
J4RNDUE0LSHs3fyKFU25a3OHsu9Et13lbZ5u34LWwh/ukvMmoo4eAaPL1ZyI
y8DW01dFCll7HB3lOMODKqzK/jCf2ofK5Q8Gl7PzIQn/6bRGOQUkzUUbe6cv
gEYsDd49D1dGYjTHE+xBBFTXIhnyVP0AYmKwpLoMCiLGcsLIFgMNtGJYbFm5
Vwil7VONrLLURN1qVrv3Bggjp9hbdXtmjyJnUwGCZM92dOgSu0K0MUIiEUNm
bGI7UcLzQ23x8sdQhnl88qK7CFLZDB+o1NNFplo++tXFu1BI+hOmWjM9lG15
XfLw+m501l5c8bKHPlrlPs5aeF4MlT9YXdUdMkBGTUc0xKKIyJ6H0s2FyIj7
CE8p7TUR5ae7utQakFHpu67TFolEpD4dxPr0PBkpu3vYxGQQ0dfjd7eJOpIR
Hyn/iUglEalSfSfIL8mo5prqL+EFIpLuF7ktME1GiFM2jO8MCT375b8uEEtB
qzdXd2UYktBv+UtNhGQKyuz++p5sSkLBhL3xQjkURMy8/OWJLQmdzLsnL15N
Qevn341we5AQp5nRGmWJgvITSVocSSSUsvPRTR4yFTltnf2a9JGEtqtpDcub
UZH0nRIjvWwSyp/qM6L8Q0URBpeuPKCR0EP1yd3RHlTkMv/qOWsLCd3au89O
L4mK5MwdiIk/SOiqnH6KWzYV/azQTD3WR0IhdSbDKTQqOhv1o8RvnIQcxo6S
t7VQESdLyimJWRKStBVyP91HRdjxTit9iYS4PDpjH4xTkVubnpU1g4Qk9j/5
UrpERf/9Ieh/P+T/ADsyb8Q=
"]]}, Annotation[#, "Charting`Private`Tag$221555#1"]& ]}}, {}}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0}, FrameTicks -> {{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{-10, 10}, {0., 99.99999183673486}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],FormBox[
TagBox[
GridBox[{{
FormBox[
TemplateBox[{"\"\\!\\(\\*SuperscriptBox[\\(x\\), \\(2\\)]\\)\""},
"LineLegend", DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
"}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm]}, {
FormBox[
TemplateBox[{"\"Approximant\""}, "LineLegend",
DisplayFunction -> (StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {
"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
False, GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False]& ), InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1, 0, 0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6666666666666666, 0., 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic, 1.35 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[1, 0, 0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[1, 0, 0], Editable -> False, Selectable ->
False]}], "]"}], "}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm]}},
GridBoxAlignment -> {"Columns" -> {{Left}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{0}}}], "Grid"], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.7949242262467995`*^9, {3.794924264160576*^9, 3.7949243179960613`*^9}, {
3.7949244127848415`*^9, 3.794924435680345*^9}, {3.7949244665050335`*^9,
3.794924479210228*^9}, 3.7949245314644566`*^9, 3.794924741209429*^9,
3.794924909890668*^9, {3.7949252569646235`*^9, 3.794925283686054*^9}, {
3.794925465056321*^9, 3.7949254852854605`*^9}, {3.794925540586546*^9,
3.7949255640793934`*^9}, 3.794926155385079*^9, {3.794931515959655*^9,
3.7949315242616544`*^9}, 3.7971878506322474`*^9, 3.7971878945262637`*^9,
3.7971879300171924`*^9, {3.797188056006774*^9, 3.797188080236759*^9},
3.797188268544236*^9, 3.7971888480716176`*^9, 3.7971890546514482`*^9,
3.797189252363526*^9, 3.7971894137850666`*^9, 3.7971900296830015`*^9,
3.7971902614519143`*^9},
CellLabel->"Out[20]=",ExpressionUUID->"b0532e91-7c31-4004-847b-e3c845440b2d"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[TextData[StyleBox["Test 2",
IgnoreSpellCheck->True,
FontFamily->"CMU Serif",
FontWeight->"Medium"]], "Subsubsection",
CellChangeTimes->{{3.797187943360903*^9, 3.797187964689477*^9}},
FontColor->RGBColor[
0.5, 0, 0.5],ExpressionUUID->"3fae9a25-d81e-42a0-b3b3-7655bdeacea4"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"polynomial2", "=",
RowBox[{"approximant", "[",
RowBox[{
RowBox[{
RowBox[{"5",
SuperscriptBox["x", "3"]}], "+",
RowBox[{"3",
SuperscriptBox["x", "2"]}], "-", "6"}], ",", "3"}], "]"}]}]], "Input",
CellChangeTimes->{{3.7971879681515512`*^9, 3.79718802135742*^9}, {
3.7971881117942085`*^9, 3.797188116429638*^9}, {3.797188199389621*^9,
3.797188219495234*^9}, {3.797188306070834*^9, 3.7971883101129694`*^9}, {
3.797188608289012*^9, 3.7971886430960336`*^9}, {3.7971886739269457`*^9,
3.797188674082595*^9}, {3.7971894640022535`*^9, 3.797189464127241*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"6db7bc31-b861-4383-8b02-a05fd47a5b07"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "6.`"}], "+",
RowBox[{
SuperscriptBox["x", "2"], " ",
RowBox[{"(",
RowBox[{"3.`", "\[VeryThinSpace]", "+",
RowBox[{"5.`", " ", "x"}]}], ")"}]}]}]], "Output",
CellChangeTimes->{{3.7971879912363195`*^9, 3.797188025207379*^9},
3.7971880990950227`*^9, {3.797188198351348*^9, 3.7971882106712465`*^9},
3.797188253708056*^9, 3.797188291397765*^9, {3.7971886061956663`*^9,
3.7971886161799345`*^9}, 3.7971886658305416`*^9, 3.797188728468511*^9,
3.7971889019863343`*^9, 3.7971893192652645`*^9, 3.7971894392252436`*^9,
3.7971894738838177`*^9, 3.7971900444239364`*^9, 3.7971902774433756`*^9},
CellLabel->"Out[27]=",ExpressionUUID->"e46cdc7f-68ae-40b1-b655-1d1177e219ba"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"5",
SuperscriptBox["x", "3"]}], "+",
RowBox[{"3",
SuperscriptBox["x", "2"]}], "-", "6"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{
"{", "\"\<5\!\(\*SuperscriptBox[\(x\), \(3\)]\)+3\!\(\*SuperscriptBox[\
\(x\), \(2\)]\)-6\>\"", "}"}]}]}], "]"}], ",",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"polynomial2", "/.",
RowBox[{"x", "\[Rule]", "k"}]}], ",",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"-", "8"}], ",", "8"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Approximant\>\"", "}"}]}]}], "]"}]}], "}"}],
"]"}]], "Input",
CellChangeTimes->{{3.797188012327228*^9, 3.7971880369470863`*^9}, {
3.797188119290537*^9, 3.7971881310364294`*^9}, {3.797188277694498*^9,
3.797188279727733*^9}, {3.7971886612916746`*^9, 3.7971886869143476`*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"691b5195-3b94-4af2-bd33-5e176cd53ba1"],
Cell[BoxData[
TemplateBox[{GraphicsBox[{{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwtmXc01u//x+2UkZXbSriRELKy6n1Z0ZIoM+I2QkL2TshoymppGCkqZaTy
wfVKtspONtmU7Bm+9++c31/XeZxzvV/j+Rrnfc4lSvE0caKjoaGppKWh+b8z
bOzk3NYWGWQEQzq37AtgNIR3sfsfGQ5XfGaRtSwAI47+5Q+rZJg1juWyNi4A
EXWvDc95MmxdKX/0+XABVFxPZB4YJUPMU6mEd4IFwCzXIQzfyCBVavBo1498
SPa1Ox7xiAzv9iWwrZ7Ih1e0Plk0B8nQXEWssui+A0YnA0V+GzGgnJtUoj31
Grh/Vrln3BWFBYPbBlkfXoLJl4cO++pFoGxLz+TE1ecQ8veQe8LQHshLinSM
tcyAjwEP3d6eEobKqPD1OqenYJR4VmTzgRA8ri7zkdJ5CAaPy4wMfwvA+EHL
3U31KZBdE/TDx5ofuCvyW4eFEsE2OnlX40sSKB9m7is6dAvC7ejzWLh5YcB6
t2HrvVig2b8H617jgUqjkXvMzZEQyqttey2cB67sSPs5WBYJy1uUjeoAHkCs
CwdrcyNhuiVb85gbD9x8cQeVRkdCd6DcR+NTPMD7/NU6Uo+E4spD+Tb8PJC1
tk/mU9ZVuHTuXGbAG24gMXb907sWAV03HsS+aueCV9F5bx93hEJrlchru0Yu
SCiNiSj9FApft1407arjgmcGaSozj0Kh3KeYP6KUCxxoT8qn2oVChnXrqzOZ
XJCR65jcPRkCbjJsTRteXMDK5lahTx8C6/URfMasXMDbVZziqBsEQjtcchZ0
OEHqZ7aF0pYf2JZ/vSmmxQlfGbXrNYf9IN37gJexCidcmDPOsKrzA8nuNdXX
ezmhyS/DrjvJD+Rf36p0YOUEJjLmHN/nBzpGhf0t7RwQQR9AlrTyBdfEzV35
LhzwnXg2O1/vDRdVpBm7hXbC8SsvDj3q8ARvxk8v/HfuhNOtKidJbzwhuN3g
GBfdTjC0TdlZEukJ1/2c7hwdYwcGNzdnHzlPyH3/jP9jPju03unxLIz1gAkV
klzKEXa4+o1yy1L7ElxQZTA/5cUG+h0MjRVNbuDBlLQ6SWGDuiOW5PlcN/D/
IZoWc5YNrPzuLhtcc4MYf2KwTIMN0u1OddpquEF2cfBFWUY2+JZ9OYXIdoUR
1dkr2x+ygktu842yaBdwONj38ssXFsBn2E4qnHMG55cHzY58YIHcuCgbtkPO
4MZ/l74ulwWuJ5jqMQs7g9e6ru33uyyw2+WPtfmAE4TiHO7O8yxw4Vg42dLZ
CZIN/MKn13dAV1DVvb4AR6g2Zz3Dr7wDnvh7KN56R4G6WifatL07wGYxyWV7
CgW+quM8YcEd0PrC73V6EAVaBL23i9PtgO55S3FJXQr093eUyzVth71aQvph
HfawciFzn577dpiTUftuzmgP0oEaWx5ZzBCxmKVWNGkL0GskPZTKDEeSnG44
F9uCma7DWfN4ZnDp+C/HLNIWItlvviI8mOGMddSHvwK20JnVa86hxgxetxYE
aU/ZQFxzxLv8hm0gF8gpe7XCGkala+wX5piA3rQyZrndAkITum+6jDDBWG87
FsqxAK6lvx96OpjgnOnJgyGhFnD4Mx97VSkTxDPVnhoiW0CKuVtJSgwTJNRR
ZM75mYNeNBv3QQEmaH/a/65JzAzSe00rg7QZwSPwGld1tikoDiuutSkzwh1i
+r5JlClUTnIqKEgxwly18HY2O1MYXW58NMrOCBF8LgosAqYgzXXCx7SHAejb
E232JZhAwRE9sf0BDOAuQXusNfo0VL5Vjhh4TQ/IcbuJkPApOFvMXaz5jB7e
runtOvTLCEZL56ZSk+hBTFFEvyDbCJjr35mfDKYHibiOjfsKRnByWFa+xIAe
RP4ctDxteBJ+8En0Jf2igzPhCmPqscdh7OouLQM+OjjZFdt9XNsQdoS9/Zu0
gw6m/byUKCyGVB2PZg78owXDpLyFlnYD8PcI2xE8SAs6h5quVVw0ACbrkZ+v
c2mh+L3M8+ZHR0Bc+b0f1yFauOlj9vsSqz4Yyp/ad16eFhTTJuO29eiBu/RE
zytRWjD5e6Fz6ZUeFIns1tNnogXlrQqX9hN6oMt2jSuwkQbaZcPoryfqAmX0
zNteexpIXeM5dGe/DsQMTlOkz9AA1rpTY0enA7k9cbwBR2hAyiTGOKpDG+Za
SsM4ZGhgeeCOQkmkNtBdOXo/ZnwLtywmTo32ICAOTDSfZtvCfJ4/KxYIAkpS
pPTHzTaw+Mj2rvkyDWC2HnOg1drAzqdKmiZDNMBMJDtSQHQDH2vbrL6ooQFz
uWQ4MfUPV5gNBmz/pA77QFgz/8o/vGRtYZJVqgb3J3kOBL9cx0WmnuLdPaow
+rb1VNKtdVwt/1VLPlMVlP0SPV57r+OMugMXGdxUoXFr5+s+rXUcdb6oUX5V
BZh2sezVbV7DwQeGhEN2q4AfQbubdW0Ve1gZclwIU4IKBtCU6F/FvV2P8uOP
KwFHfbjV4cpVrFPqfkVcQAlen/l3z+v2Kn5XT3aGj4ow7LrM1S62it8oKdVc
XT8AJsl/mJ8cX8FmYmpceakKoDDRuSD/eAmPvPxy6BYhC74z+/eRopdwc8zs
u4h/MvBx+arNptsSZim7aC1ZIgPaTNLVX9WWMPvVnR+jD8qACTn4nmvbIo68
lablqyENfjYCGpksi9hxkq3D1E4KShw9PK7PLeCHUcXKm3ulYPNiRcblzgV8
522b8YmZvRAT7MaCXixgM3YtyabIvXD/XklPj84CzmUj5s69lYSSZqsrvMHz
OFDf3AckJGDzZ17hht083qbNLqexLA46A3TjwwbzuHa7o9zROnFomM41Ltw1
j0NPF9uTPcWhh2Vd1Dh/Ds/2hxFvP1P/E/QfVcaPz+LDMl2aVlfFQO/k3xWv
xlmsqaBU/Z+1GMSd0d1vUTyLO7XO7M5SFQMOh6kUyehZnPbfxyTGaVEQi9C8
8GXPLA71Szo5RxEFvZLu7RtmM7iFtdnypaMI5OU+V6/RnMHZ6e2yd/VEgO+R
p+tdkRmcel3aepuECPxYZko83vYXN+o/t5Jr3AMSIWYcj9emsfX4LBiOCsOK
9aTngcppfNm+5NbbPGH4qhXeWHVrGqu9sngqHCgMvpvPb0+LTGMh/QMWrOzC
UHF1kRUZ/MEDT1kTR/R3Qyol3r2N4w9Wfn1o+STvbnDV3f3Vpes3LswPkn89
JgQcjPo37l76jf219g+gW0JwPi55+1DSFC6w1Sq6PiQIiq5SrgE2U5hH5wrZ
/j9BYDpWWsuydwoLG9AtCCQLQh7LcKxyySSmHBu6Im8oCP9uKzHFDExgM92G
okclAtDkWeMkkDuB72vXPT3xQAAyja2r8nwm8Fq8VvD3QAE4xhUV3cE0gW1v
Pa7U1BCAByktdPv2j+OT7vSiodX84O7vTClbGsOH65xWfV7xAzJf+3waxnDD
fe9T0nf5YZxP7Gqw6RieJWdr1tnyg2ra5a2GoFEssCIXc4eOn7q/GM/b6Y7i
m8tPyjT+8EGvzYPyBdZRzJU4TZP4kw+i93wO2/1sBD+QNfDWzOcDC5qzvfmu
I/iTfy99/BM+kB0c1zqiNIKlZy65BN3kg9YMjn8e1cOYYLx/Wd2ND7Kjsqzp
E4YxzVR5EIMVHwQ7qv13z3IYn05eE3Q9xgdiknbB8HsId1fVLy7K8oFXztsV
Tu4hfLggzqt3hQQK7B5ROgO/8Aq/X9TSHxLMesuy+7z5heU17l6/NkQCb60c
cpvBL6yp1ji/0UgCpfQLeQy7fmEpO9mUoWoSLDBKqqv8GsS4TT7nYDkJ/Boz
jFJDBzFJ7dkLch4JVJXtO6uPDuK/XobNH7JJsHR/j+My7yB+ep3td8FTEhRv
9E7vHR7AStK3SNwPSBBASQuyyB/ARQuOPj8SSaBWY8UQHz6AD9xR3LN+kwQr
Mvx3Ph0fwIVPkjSuxJJgflLmqMrXfrzyLubwkzAS+Ba9tE117sfNG6bOKkFU
f2ESvss0/bjPVCZU3I9q3yAj3uJRH5axyH3qeplqj2PP008qffjLW48ZOg8S
BHU9KhJo6sUFW7tuT7uRYC2Trz7ErRfT/zl0X9qFBCGXUvp7GHpxhVC03Hsn
EvxT5Vo89LQHryvFeN10IEEYzZ0dT9V78MeOwbA8exJs1rGI0LR1Y6Y3yv78
diSISIpTsffoxjMWQkENtiSgtWE8XsHcjSMjVLMrbEgQKRlpR87swtW1Irs3
zpGAYWbTL/pQF67/EbgRSOVrn0JujHR04vunepyVqcwUtfLsiHcn1vw5Hrif
yrEn/IpfsHZi2KVlSqEyM+9cA/OLn1jxjc+uZirH93sMumr/xGm6+/sDqP52
5Ewt1Xd34B3hTE1nqPHc8HZhlfXvwHG0j7c5nycBq9aI6C2ODizqc/t5DjX+
24yUg9O5P/BgQGDdbgoJdjb2nTil/wO3Fq0kAjX/hPvWlHf97Zi+8bVoAlUf
LsrPAM7gdhx6UTHl+gUS8Cw2Z7TmteFALJWzcpEEKeVGH5WPtmHuz21xLlT9
eeMavqUMtWKJztqGdS8S8AlWrZjzteK+ga3VaH8SPBjWZv9U0ILTBMLFA6j1
FcgrJwucbMFbmyUK10JJsFv7o1HP1WY8aj3m/ieSBLrfzY5+/tGI/XwMJz4l
kMDMmZzeElqH30cJpT2h9uf1yz5xie9rscsbkUSrAhKUhX7xNJmuwf8eiUXy
FJNAPMnhcMv5apz1I/lQSBkJ5nBmd7POF9y1z/nZrwYSSDbMV9wNqcBxv24M
n6POh+UP3dzTRZ9xbdiDjeoWElBnL7BZAnCX2+Ajh04SCCsZymZwlmDpWPNt
t0ao9Tw6viYa9RFblv71OjNOgt/n4+rSF4px/azl9Y1JEpj6S90XdX6PVS7O
346hzmfJzVrn9I5CbOzOX/LnLwlEM11URI8W4Ca1fQYH5kgQ94mZIb3kHb7E
E3H51AIJ+p6efq5tkYe7dEJ8jyyR4M3Xuzramq9w07bAGzzU+Q9Zbe5Hwi8x
w4vW2Q+rJDgqyRWGaJ9jWcepX3LrJCCZmgig4XS8GSn0MOAfCRq2xD2v3H6M
FQwqTRI2SOBi+Twn/Mw9HLhAGAZsUvu1UGI4TOAuvvX993vpLRIg/hOH1uAa
luCX6nhJ5Zn7DxxnH3jjBdKpsb9UDqVLrjqiZkkUsmPRTSrLPXSo4VG9QvBq
t39upnIff/40y86bRNvcNJ0rlU2VfpbGaCcTmRdcRSqo/oo7zSNjQx4SakPp
Z7up8bDBFLnS6hlxPGext4AaL5H0KqYyIJO4u/F54Qg1n8vOFycqk7MJIDu2
p1DzzVCXOVGVn0PcPq/+3+NlErSxTuVVfX9NFCw8GTy3SJ2vgVzO6qm3xKDk
XFQzVd80SxUNh+h8olk9oXeVqr+KbsrFIa5CQv3yj31tv0nwXXYxzSG9iGjk
EMuynSDBBd6z34fki4mj55pi71HrTUPzfsuh/ANx7t5hjrBBaj9P8BwYPvGJ
wIz1gWy9JFBs9aU4dpcQUlON/478pOpd2pY07FpKGN1407G3lQSO2cpVjitl
xMg+0Mv7RoKNO8lLwzGYeL7D6crPGup9rbWkgutA6F5ercj6TL0vaVWlyF9B
zPU5mQgVUfe94I4+74EKwvPSCk/la+r3O0uWCl58ITIT/n5jek6C1FV+KSXV
KmJbVgSHWTIJKNN1yGejisgUbOc4f4Nan6Egy8LKaqJRlX5x/SoJar52Xlcy
rSVyne3NJi9R+yGwq8Zapo7gTj729hh1PzCLdzNE09cTejmbx8lmJDgW0hPe
VthARMSQjyprkWBSsve/fze+EidPVEi4yFH3T0vvirjjN8JpMfYwiwgJvu7r
9/bjaSTWfw8JpdKSwL29/+3j342EhvpL26BZXohBXksUShNh6Pi3rWKAF/b+
9lK6odFMmJpQzK+U8YKLrveb7skWAnvYhp/35AW1B3MNf81aCZbEMjkVK15g
/us9Sf+llZC9Yc5wXo8Xch767JV91Eb4rN0jZfPywuSsb3ro8R/EyzffX1YU
7IISg0Wc8OEHcdAu7uTavV1w/bFfXxa5g8jsV2b2Dd0FMkf9Bb+tdxCJqOKD
uO4ucH8WkLL7dSfhclGxXrOGB7SWlgsP8HUR3k5ME3rZPMB6IrBFP7qLsCVf
Yw+P5oE3y4E7Pc51E5TRPqeAwzwwbRQcX87aSxS5xnIYvOSG8qy1Fy2BvYS7
g4r83QhuuL0WXD063Evs5Duiv2rODfLZIfQ7y/qIlDdTpwQYuOFjeHn5W9UB
QsutIcfuNBc8y9n89sl9gOgW5DayFuOCuLbDvV8yBgi3K35d9nOcYCGN1zvY
B4k+89HM+DucsNqO1WjGBolCuX9fGMo5QGP/5wLje0PE/Vk5gfOtbKDS9iO1
vG6I6Lu+aaRpwwYKIb+DZf8NEd8VLpbIj7CCZB1Jl9l+mBCq7Y01+csC3E4e
rVh6hPCVDkD8v7fD7zTBBbnyUSJiek7HL5oRxnQP/EybGSU835smC00zwK/J
I6U7yGNEjbDVhfSzDNCp5h09GjtG8G3yjygL00N1Wy3Pk9PjhNViUaRQCg08
ZfVXYRuZIFz+PP3stX8JPyy8wR9CmiTQ7dTNzY8LONUqfWP86CRx7ulEWwsx
j2++/FpVmTdJ2Nnsm99PzOBAPbJZaOAU8fKl1WrttmFsEtrkP8Xyh4B4XY1a
5gbiJHnUyvLwH4KGJKUVm9hGGNavH67xovJawGPX993EYb692zLb/xDvMi/X
zgiNEDJFYfesnk4T4/OCzCoccwSd/64eR/4ZQu1Xqz07Ky2ysstt+ag8Q9jp
n6x4L0+HCo4RdazGM0TEq6TTeWb0iLLHtbgoZobw2jP66nkeI6qoLU1gWJgh
jDcOCirE7kBRgo76Wd9niQiJdBEnTy7Uw7iquTIxS0hpNd/qEuJGyjO3FE8w
zhG1nBKzu79yo+HKD3sWNOeIc0fHZkkKu5CeB8uabs4c4b8rXVuAnQ8xfC7I
G4qaJ2zDdQ0dxIXRuVcGzw8+nSc2mzVsm/4Ko6KUnkc3SuYJATHuOoWyPcjR
jSleaXaeSKS/ETyZJ4KquK0comwXCC5mPiZ/azEU40zLR1ZfJE4cilVUGJFA
21iNr1Kml4jQr3se2nzZjyz2WoHq9mVCMe6EGZehHMrVcdzaIb5MJG8tFXZ/
k0NGQYFhhZbLhFq5EX7XI49SR58FMVQtE6EU56jP9AeQ5OfZy9mPVognWbf/
nj+qhPT9kyiThmtEguWs9ytdNZR693F6ucMasep5cMH+vhoaf/1iIDF8jfjQ
QfEt+qOGbg79Z6tZtEakusq9kH+ojtqMh61u7lknhjXXjG6vaSBHGRVTuaV1
QurLZTeXzkMoauCHrnfmBvG5MWuheLsO6vt0/FJg6QYx50yp/aahgzSSIDW8
fYMIr+0lK7jroBn93Inr2zaJEK4H5j8bdZDtq7A7mRc3CYXOvyulD3WRhr94
d5vSFlE+cdtyO6GPVhnVPwlSaBBfF98R9MUQZXvPf3viQYNiWJbRwU1DdKb/
zS/REBqkduT33wj1o+jdRzFWqWQapL2VfYot/yhyvsh6XrmaBrWlythwZB1D
bU39DCelaVEaz6/R2Qcn0LtHMcbhc7QogUlf2crBGDVwx4ztpKFD2jf/85GN
N0ajN66Fp7PRoY0WrztKb42RUGj060opOpT3fPnPwLoxijsXycxyng6BB69h
6b3TyG53ONxroENjjA/8UjpNEMdTP4X8LHoku/a+tznmLJIh+dXoFNCj6exr
N2IKz6Ijd3xt2zA9eiyR/NJ34CwKveJzc7mLHg09/FaxoWGGxs9fHj/EyYDa
fUwCa+bMEIhcelYfxoDiz2b9trhkgTwzHDmGzRgR+bq7mO8da3Q76EHabQdG
NCpZH0EGa5Rn/F1K3YsRlUP9CPOsNZrePKh9O54ROdJVa/ibnkPu1izeaqWM
6OE5IZM+ARvkxlPQelOUCTE7M+psFtoi55itVJXfTGjpmEWFJLM9irFRJg+s
MCFO9678dbI9ylZ2fXudcRt67jwX8YewRyO/Wmr6hbeh+z7uq3sD7ZEjkb0S
f3obIkr1FlYn7BFl5YRVX/E2JHzNkbSnlYJs3R7ujr3KjN53ntH58Z8jWu/c
/n32FjO6PNn8oLLLEd0/GhR+7iEzuu7DHNy06oiapSz6DxQyo58vPrBqqzkh
vbFd6T3DzMj+ZTF9bLET2ud4V1zRcDvSiF4OLfjojBZs4mR62XegpIi4iolW
FxR/2l9dKY0FHTFnqp90uYQSv0q7v85hQU9SFs8tJ15CaQb9TyQ+sKBj9ao/
pcsuoXeHDBn4WljQ8X3mjUxcHujnPoHGf9tY0Qv08n1ymQeSoit3rPZhRaGL
L7axsnuh6gLGBMvjbCj5r5vc45DLiIEnZfTKGjsKHxsw/J3si7imw9m5tu1E
edllzWfe+CLRWhfVLO6diDvqklZTlS86HKoVUyu7E92SsWvbWvJFQcNDEpzn
dyIuR70uHSs/NF2k6JTxZSc69in9ka24P/otPX6ZcoQD6YkHD+6pCUAdDddm
ondyoprg+X47wxCUfPix/lleTlToZVii5BKCTPKLHkrs5kS+YkITwnEh6Hvq
kF61NCeyUzdxPVwbgqrttR9sO8KJxouClzOOhqLi5X/a10M50X+/ap13nA5D
qWTfpDsTnMiVv+RykvcVdDaEovrwCxd6urr8+BhtJHJnmRL7bsWD/uU4xxFt
MWjPq+pUpsldyEeV6x6cvolCPuqa7nxEQnRfOGeC799FXtnuxary/Gi/YeKU
jW4KYqU7SJEbEUDaZ8v+iVY/QPqXzqRIJwmhinmZvBc1TxDfp92e+tQ9nNw8
eDZiKx0lesfdVejYg2KCq0JYxJ8jk5hT+x8Xi6AXF/TM6ykvkbR19NmsMFHU
XyaYEN//Cv0Y3Z6RdFYMTVZ6mq7TvkPfKSPaXHvIyGd13rF6dwEaZHixkiJG
Rhu128xS9xaghWyXt/ySZPTh60Kj64ECxD81JSS6n4yC7o/YCeoXIEefuWV5
TTKqNJ9hznEvQGtRW29OmpORxD5BGs/SAiT5nF8g/g4ZfSk6vpljW4jUDbqb
WJPIaMroj/5vl0J0YiItNiGVjCKsP0sr+hSiy/tFFu89pvqbv/G9NrYQlb6X
bMp+RUa9qkEJovmFyKRaKaayhow+/Sd+8ypDEXJyWdQybCAjUUmt+Q32IhS4
48N8w3cyImUU0IbzF6HHRhr2re1kdHHJgBQvV4TGfyCtX0NkZLD3l2qDRRFa
C6SbdxojozhlmHR0KEJsgpU5E5NkNJHBfZzOowgpnjcgzc6SUVX9c27DqCKk
T7v9u+8iGUnxSYfN3CpCFpn10SsrZOQ5nZeSdr8Iuenf1Az9R7VH6rA5kVmE
/v+9EF2y0f+x9aYI/Q9cHw8C
"]]},
Annotation[#, "Charting`Private`Tag$230309#1"]& ]}}, {}}, {{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]],
LineBox[CompressedData["
1:eJwtmXc4V+//x+0ZIRx7VWQko8zq3LbISJFUSJGESkql7HwkSbJJZkOFSla4
X1ZJKHtnC9mbxO/9va7fX+d6XNe5znndz9fz9Tznvm5xhysWjjRUVFRV1FRU
/7vKk7wTW1ui8CJlpWPrYRpcWdsZsrYuCh7P4A9bYBrkflSUXFgSBUIlrV/k
Thoo7TFxGP0jCu3uze5HnNNAlTOoq65dFPIu/dlerpsGaGiuNj5HFIr7ezbU
N1PB4r/6N8p2onDgo5iW2fVU8PoR5HaxTASGhmjcpxxToKWFdaL8nDAYGtNG
S/6XBMJwhVtVSAjCt8sE5A7HwafLVfTbewWgW6yoaygjGuzDFGc7A/ghe8Km
97RnJKxGeodgkg+ud9+RKXj0GNLZf/HHDfBCIncC6jwbCklGih7ND3iA5WiG
6lLPfQhwPXdL+gg3OLdMaUjuCQBv2iwvjykuODbHUaJ95B6c8/uxq+0VJ5i/
64kKTPKC6NKRuCQXDuDlpbGpbfQA21sJPqqOHBBUuVsyrswD9iibXWiy44Dg
f3GHr7/xgOJXhfuYLDlA+Aaj9rH7HvDr6cMv10kO+EOrwvVW3QOkXBQXjbg5
YFLaqbEj4xp47F1PnvfeDuWjN2Ong65Ccd+ebW8l2IHUXDPa0eYKdw9Sv0vg
Y4eR3kUPhUJXOBTfafKAnR1UDxdWOCS4AliEPnZaZ4PvvrmfGexc4Wv1Hy7x
JjYI+SeibTx+GVreZPPH+LPB+4SPvEB9Gaa99kv59W+DMN6isF3al2AnB9I+
kcwK9RMSQipbjhCuMHDH5Skr2Gf6RZoMO8KqecBHvxBWeLDf9733N0eoe1K1
650HK1RUG1UKRjmC544jjAwGrBBy8bGsi4wjfOG1qCuYYYFkfddi1dMXwEX4
gpWgFguknD8nf7zeAT7IhLgMDjGBJNJ6NzloB6KN9kWynUwwmWWO0gvtIMxL
nelGAxP4FKlO+IXbgWPVRCZjERPMl/lovNewAz5bkwG5cCZosgxvGYqyhXtP
uKy91JiAlSld1t/8LBiuJulte8QIrruETUSGbeBT8o0oywBGCHp0siWqzAYk
9EyHkr0YYcF/TVEh3gb+PtnyU3RghDJmpz2tpjaQLetQYqXKCDm+vsxtn08B
t52UcuoAAxScSu9MT7KGvur3YioqDGDpKh0/d8sK7h5f01WTY4DKnfgav40V
8A2gSxoSDHCb2G9vp2kF5hs/3h9mZwDPY0d09TYtAZSmtQ1G6UHbjirC674l
pDyXcbSOoYdgu0TXS/EnwOF2+us7y3TwqMd6XrDdAjYZ/tTfnaSDHm931YnP
FpAQpTTvM0gHX3V/lrWkWEBTTrlGYAMdiM3R22y6WIDOaN/3hy/o4D4tv3Qa
lQXsOi40nWRFB/phHfaiisdgRC5aCefTgtA+id4dJmYg45M5PfaGFjj/HKW7
z28G7j8+ZXGl0sKp3F7r/aOmsHqtTcLpIS34BGxbOupnCiwFxA42e1qovfFs
5FyBCShoJSzYMNOCuKgP47rCUfC2fJ63fJoG9r7/YvLL/AjAi5yrYsdoIDKn
e6hu1xGgW8VyRvo08GKHwubiqiGEJ/RnPFOgAX81D5m5VENI6ROP1qWngaTd
NibRywbw5VLGjchsapDmzhJyzdIHTp/XKvLU1EDl1dZvqqkLwfl7ajhWqCB2
v/rEMz5dWJ9+eWphkgoUeKapBZd1YNDuxd3CDip4Hc84lPxeBz5opVdo51JB
miSrYK2MDljQPzM9aUcFzUz9XU93a4MUv3g9lfcWpsoRsRU7iIAjVHS22mkL
f/B6dH1ZBMHquvCOhxZbOHo/f/0yNYKaHoFTPDJbeE+t/4s/ESQ4p3CPSHdu
4o191Z+asw9DlhTTPwvVTazxd+m5yPpBkFOZkctc2MD3OT/LrtSpg5O8r29R
7wYWkzlZUBynDs8ltzfVf93AM/+kYjsuqAMXsc9rOXEDF6k3ikhsqsHKinu5
ge4G9vi489fQfjWoKJq2nIj6i0s12xJ/fVCBjfc+rzZ9/uK5SEJrZ5AKHMhi
/8t16S+23afsXGqpAq8S5FM0D/3FVxMcGOfWDsAjb/eJsJF1PDERyG+ifwCs
D0377FNZxwHUv1ijp5Uh8oBPo47YOo5UFc5kq1aG73vZd1mzrOP+gz1TbYnK
cFhE/pvfrzVcTuicsjFShp1bbjuagtfwNoiWEnqjBNMw9dKzfRVvv3hG3NBb
EQJ1p34W3VrBOgP5tMav5KHCcNJs//kVjLxOuTtdkgcqkz8N2SYrmEWo4SeL
rDzctRyvS5dYwbwGAgcmc/bCTaeRmkd1y9iYtyCAGuTAOaQXzokt43GlWrfl
VRl4EdZD9rAs465Jo6EzFTIwHNFdZrW0hMsemCvohMnAufjOEuPaJewg3s70
SFwGbLJaCw94LmHrz0af6S2k4WhdfS5zzSJuUX56jrVWCkJ/1u0L+rCIO46L
9sokSkFNy/fszaRFPCcztL3cVQr0er+9Xbi2iC9+3LQw45SCw9PVr3oFF3GU
2KbVkJ0kKHCUpby/soCb6EefXOLaDe7cpaJyNguYuSGLPXdiF7zlK0l+obuA
PcVtJC5U7gJp8eKkRP4FvCji+IXr5i6QUMqPu185j2svZjLd6d8JPCeyI04R
8zi/Nub9bI0EfJB8WKxHO49/RzIcpcmSAPO1i8OKM3PYzmyn7eWHEhCaLK7G
8nUOu3jLbtc2k4DNsai+4ptz2Pzu1NvFLnEYvectL9Q2iwtpZwQYacQh0Nza
mqliFjPIxz+zHhMDsZ0HAhbfzeKxzO371hvEwKZmurXu/iwuOyGdIftMDBq4
HO7dOzCLt0KD+zQOiYG72ZO4UukZfOnW4VI9QhReLRpNRlPPYOPP8ze9p0Rg
MJ4OuXdO4xVjn7vaVSJgNez1W+TBND5J+ybf77oIkLdtVfzGpvDXAMPV9A5h
uCPCF2oNUzhqMkPc6KMw5FU29irETeE7/1b23gkXhj3sevcHDKbwoXJOTU99
YeBIl23RfjmJNR5Qq+WXCIGR4YiUoO8kvjZMFfokUQiCppK9F6wm8Q7EazVz
RwhWVbl2ZjBMYu1MrlfymkIwULd6jd7pD+7qI3XTygXhw3L19ppdE7i6q3P4
0YgAhGelVRxeG8cNqVELNLUCcNnW98an+nFMTj/v28oWgF1f1LrTbo7jPZ/6
Y8LuCEBM9JsX92rGcKtxrOdPQgA8joScWkwawy3hDvbnqQTA7N+FbZevjeG+
yJkCz3F+YHIU8bAWGMPD3v/NsZXyw539Tw4pu/7GLhKa/muX+MFqzG32NfqN
b5allNpa8YNyklG6GM9vrHhSfVFNhx8maemY2ctGsY/QwVgDEX6wbb7ZMrZ9
FKsZcL9828kHGv8d/89ueAQ78ye/jPvGB4SmgkZb4Qie2FmnMFvEBz/Txp9X
nhvB73xNdvUm8oG2x5nLyR+H8VLatYBHF/hARFJdhCdkGNuHvC7OO8kHfzt5
Gh+eGcZ4YJn5sDEf5Gn9ULlNP4wlw1kOeCjzQcTSm/GZziFMKLjlCezhA7fX
IUlO2UO4bkg4UkyYDyQ5tWlOnBzCViJpOSQTH9BUi3yqlR3COxY5n1ptEtB3
6+9FLaoh7HSbSejLIgFx/Xn18q8H8TOFCsesQQJYcqXimf8OYM60xVqnCgJG
z9Md9fsxgFX0JOvFPxNQSQxsLqcP4KfNZrRyeQTc9U24MHx0AH8zq7SQfkmA
tbIXcVp8AIeGvd4ukErAgd/HaxuX+rGVBRhYJhIwbcqmgJP7cQ9v4dUXEQTU
0kwMHrjej30vHKAvfkjAy/wv0W8N+vFmh+CZHf8REOSSbrhTqB/XJaobvA8g
AA5SrSgP9GG7ljNxkT4E3M4oOiMe2odlso6L598hQGnb9Qp25T6cpjv5UcCL