-
Notifications
You must be signed in to change notification settings - Fork 0
/
isim_comp.py
300 lines (235 loc) · 10.2 KB
/
isim_comp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
""" iSIM_MODULES
----------------------------------------------------------------------
Miranda-Quintana Group, Department of Chemistry, University of Florida
----------------------------------------------------------------------
Please, cite the original paper on iSIM:
"""
def calculate_counters(data, n_objects = None, k = 1):
"""Calculate 1-similarity, 0-similarity, and dissimilarity counters
Arguments
---------
data : np.ndarray
Array of arrays, each sub-array contains the binary object
OR Array with the columnwise sum, if so specify n_objects
n_objects : int
Number of objects, only necessary if the column wize sum is the input data.
k : int
Integer indicating the 1/k power used to approximate the average of the
similarity values elevated to 1/k.
Returns
-------
counters : dict
Dictionary with the weighted and non-weighted counters.
"""
# Check if the data is a np.ndarray of a list
if not isinstance(data, np.ndarray):
raise TypeError("Warning: Input data is not a np.ndarray, to secure the right results please input the right data type")
if data.ndim == 1:
c_total = data
if not n_objects:
raise ValueError("Input data is the columnwise sum, please specify number of objects")
else:
c_total = np.sum(data, axis = 0)
if not n_objects:
n_objects = len(data)
elif n_objects and n_objects != len(data):
print("Warning, specified number of objects is different from the number of objects in data")
n_objects = len(data)
print("Doing calculations with", n_objects, "objects.")
# Calculate a, d, b + c
a_array = c_total * (c_total - 1) / 2
off_coincidences = n_objects - c_total
d_array = off_coincidences * (off_coincidences - 1) / 2
dis_array = off_coincidences * c_total
a = np.sum(np.power(a_array, 1/k))
d = np.sum(np.power(d_array, 1/k))
total_dis = np.sum(np.power(dis_array, 1/k))
total_sim = a + d
p = total_sim + total_dis
counters = {"a": a, "d": d, "total_sim": total_sim,
"total_dis": total_dis, "p": p}
return counters
def calculate_isim(data, n_objects = None, n_ary = 'RR'):
"""Calculate the iSIM index for RR, JT, or SM
Arguments
---------
data : np.ndarray
Array of arrays, each sub-array contains the binary object
OR Array with the columnwise sum, if so specify n_objects
n_objects : int
Number of objects, only necessary if the column wize sum is the input data.
n_ary : str
String with the initials of the desired similarity index to calculate the iSIM from.
Only RR, JT, or SM are available. For other indexes use gen_sim_dict.
Returns
-------
isim : float
iSIM index for the specified similarity index.
"""
# Check if the data is a np.ndarray of a list
if not isinstance(data, np.ndarray):
raise TypeError("Warning: Input data is not a np.ndarray, to secure the right results please input the right data type")
if data.ndim == 1:
c_total = data
if not n_objects:
raise ValueError("Input data is the columnwise sum, please specify number of objects")
else:
c_total = np.sum(data, axis = 0)
if not n_objects:
n_objects = len(data)
elif n_objects and n_objects != len(data):
print("Warning, specified number of objects is different from the number of objects in data")
n_objects = len(data)
print("Doing calculations with", n_objects, "objects.")
# Calculate only necessary counters for the desired index
if n_ary == 'RR':
a = np.sum(c_total * (c_total - 1) / 2)
p = n_objects * (n_objects - 1) * len(c_total) / 2
return a/p
elif n_ary == 'JT':
a = np.sum(c_total * (c_total - 1) / 2)
off_coincidences = n_objects - c_total
total_dis = np.sum(off_coincidences * c_total)
return a/(a + total_dis)
elif n_ary == 'SM':
a = np.sum(c_total * (c_total - 1) / 2)
off_coincidences = n_objects - c_total
d = np.sum(off_coincidences * (off_coincidences - 1) / 2)
p = n_objects * (n_objects - 1) * len(c_total) / 2
return (a + d)/p
def gen_sim_dict(data, n_objects = None, k = 1):
"""Calculate a dictionary containing all the available similarity indexes
Arguments
---------
See calculate counters.
Returns
-------
sim_dict : dict
Dictionary with the weighted and non-weighted similarity indexes."""
# Indices
# AC: Austin-Colwell, BUB: Baroni-Urbani-Buser, CTn: Consoni-Todschini n
# Fai: Faith, Gle: Gleason, Ja: Jaccard, Ja0: Jaccard 0-variant
# JT: Jaccard-Tanimoto, RT: Rogers-Tanimoto, RR: Russel-Rao
# SM: Sokal-Michener, SSn: Sokal-Sneath n
# Calculate the similarity and dissimilarity counters
counters = calculate_counters(data = data, n_objects = n_objects, k = k)
ac = (2/np.pi) * np.arcsin(np.sqrt(counters['total_sim']/
counters['p']))
bub = ((counters['a'] * counters['d'])**0.5 + counters['a'])/\
((counters['a'] * counters['d'])**0.5 + counters['a'] + counters['total_dis'])
fai = (counters['a'] + 0.5 * counters['d'])/\
(counters['p'])
gle = (2 * counters['a'])/\
(2 * counters['a'] + counters['total_dis'])
ja = (3 * counters['a'])/\
(3 * counters['a'] + counters['total_dis'])
jt = (counters['a'])/\
(counters['a'] + counters['total_dis'])
rt = (counters['total_sim'])/\
(counters['p'] + counters['total_dis'])
rr = (counters['a'])/\
(counters['p'])
sm = (counters['total_sim'])/\
(counters['p'])
ss1 = (counters['a'])/\
(counters['a'] + 2 * counters['total_dis'])
ss2 = (2 * counters['total_sim'])/\
(counters['p'] + counters['total_sim'])
# Dictionary with all the results
Indices = {'AC': ac, 'BUB':bub, 'Fai':fai, 'Gle':gle, 'Ja':ja,
'JT':jt, 'RT':rt, 'RR':rr, 'SM':sm, 'SS1':ss1, 'SS2':ss2}
#Indices = {'Fai':fai, 'Gle':gle, 'Ja':ja,
# 'JT':jt, 'RT':rt, 'RR':rr, 'SM':sm, 'SS1':ss1, 'SS2':ss2}
return Indices
def calculate_medoid(data, n_ary = 'RR', c_total = None):
"""Calculate the medoid of a set
Arguments
--------
data: np.array
np.array of all the binary objects
n_ary: string
string with the initials of the desired similarity index to calculate the medoid from.
See gen_sim_dict description for keys
c_total:
np.array with the columnwise sums, not necessary to provide"""
if c_total is None: c_total = np.sum(data, axis = 0)
elif c_total is not None and len(data[0]) != len(c_total): raise ValueError("Dimensions of objects and columnwise sum differ")
n_objects = len(data)
index = n_objects + 1
min_sim = 1.01
comp_sums = c_total - data
medoids = []
for i, obj in enumerate(comp_sums):
sim_index = gen_sim_dict(obj, n_objects = n_objects - 1)[n_ary]
if sim_index < min_sim:
min_sim = sim_index
index = i
else:
pass
return index
def calculate_outlier(data, n_ary = 'RR', c_total = None):
"""Calculate the medoid of a set
Arguments
--------
data: np.array
np.array of all the binary objects
n_ary: string
string with the initials of the desired similarity index to calculate the medoid from.
See gen_sim_dict description for keys
c_total:
np.array with the columnwise sums, not necessary to provide"""
if c_total is None: c_total = np.sum(data, axis = 0)
elif c_total is not None and len(data[0]) != len(c_total): raise ValueError("Dimensions of objects and columnwise sum differ")
n_objects = len(data)
index = n_objects + 1
max_sim = -0.01
comp_sums = c_total - data
for i, obj in enumerate(comp_sums):
sim_index = gen_sim_dict(obj, n_objects = n_objects - 1)[n_ary]
if sim_index > max_sim:
max_sim = sim_index
index = i
else:
pass
return index
def calculate_comp_sim(data, n_ary = 'RR', c_total = None):
"""Calculate the complementary similarity for all elements"""
if c_total is None: c_total = np.sum(data, axis = 0)
elif c_total is not None and len(data[0]) != len(c_total): raise ValueError("Dimensions of objects and columnwise sum differ")
n_objects = len(data)
comp_sums = c_total - data
total = []
for i, obj in enumerate(comp_sums):
sim_index = gen_sim_dict(obj, n_objects = n_objects - 1)[n_ary]
total.append(sim_index)
return total
def vector_comp_sim(data, n_objects = None, n_ary = 'RR'):
"""Calculate the complementary similarity for RR, JT, or SM
Arguments
---------
data : np.ndarray
Array of arrays, each sub-array contains the binary object
n_objects : int
Number of objects, only necessary if the column wize sum is the input data.
n_ary : str
String with the initials of the desired similarity index to calculate the iSIM from.
Only RR, JT, or SM are available. For other indexes use gen_sim_dict.
Returns
-------
comp_sims : nd.array
1D array with the complementary similarities of all the molecules in the set.
"""
if not n_objects:
n_objects = len(data) - 1
c_total = np.sum(data, axis = 0)
m = len(c_total)
comp_matrix = c_total - data
a = comp_matrix * (comp_matrix - 1)/2
if n_ary == 'RR':
comp_sims = np.sum(a, axis = 1)/(m * n_objects * (n_objects - 1)/2)
elif n_ary == 'JT':
comp_sims = np.sum(a, axis = 1)/np.sum((a + comp_matrix * (n_objects - comp_matrix)), axis = 1)
elif n_ary == 'SM':
comp_sims = np.sum((a + (n_objects - comp_matrix) * (n_objects - comp_matrix - 1)), axis = 1)/(m * n_objects * (n_objects - 1)/2)
return comp_sims