-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
93 lines (78 loc) · 3.83 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
# load in resnet pretrained model
resnet = models.resnet50(pretrained=True)
# freeze the features from being trained
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
print('modules ='+str(modules))
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size ,batch_size=32, num_layers=2,drop_out = 0.15):
super(DecoderRNN, self).__init__()
self.embed_size = embed_size
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.batch_size = batch_size
self.num_layers = num_layers
self.drop_out = drop_out
self.embedding_layer = nn.Embedding(self.vocab_size, self.embed_size)
self.lstm = nn.LSTM(input_size = self.embed_size, hidden_size = self.hidden_size, num_layers= self.num_layers,
batch_first = True, dropout=self.drop_out)
self.linear = nn.Linear(self.hidden_size, self.vocab_size)
# initialize the hidden state
self.hidden = self.init_hidden(self.batch_size)
def init_hidden(self, batch_size):
# The axes dimensions are (num_layers, batch_size, hidden_size). batch_size explicitly made = 1
return (torch.zeros(self.num_layers, self.batch_size, self.hidden_size).cuda(),
torch.zeros(self.num_layers, self.batch_size, self.hidden_size).cuda())
def forward(self, features, captions):
captions = captions[:,:-1]
embed = self.embedding_layer(captions)
#reshape features
#features :(batch_size, 1, embed)
features = features.view(self.batch_size, 1, -1)
#combine features and embed
#embed is the input tensor
#embed shape : (batch_size, seq_len, embed)
embed = torch.cat((features, embed), dim =1)
# lstm_outputs shape : (batch_size, seq_len, hidden_size)
lstm_outputs, self.hidden = self.lstm(embed, self.hidden)
#lstm_outputs = self.dropout(lstm_outputs)
lstm_outputs_shape = lstm_outputs.shape
lstm_outputs_shape = list(lstm_outputs_shape)
lstm_outputs = lstm_outputs.reshape(lstm_outputs.size()[0]*lstm_outputs.size()[1], -1)
#get the probability for the next word
#vocab outputs shape ; (batch_size*seq, vocab_size)
vocab_outputs = self.linear(lstm_outputs)
# new vocab outputs shape :(batch_size, seq, vocab_size)
vocab_outputs = vocab_outputs.reshape(lstm_outputs_shape[0], lstm_outputs_shape[1], -1)
return vocab_outputs
def sample(self, inputs, states=None, max_len=20):
output = []
batch_size = inputs.shape[0]
hidden = (torch.randn(1, 1, 512).to(inputs.device),
torch.randn(1, 1, 512).to(inputs.device))
while True:
lstm_out, hidden = self.lstm(inputs, hidden)
outputs = self.linear(lstm_out)
outputs = outputs.squeeze(1)
_, max_pred_index = torch.max(outputs, dim = 1)
output.append(max_pred_index.cpu().numpy()[0].item())
if (max_pred_index == 1):
break
inputs = self.embedding_layer(max_pred_index)
inputs = inputs.unsqueeze(1)
return output