forked from billzhonggz/LayoutGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
257 lines (208 loc) · 10.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""A verification to the idea of LayoutGAN
Referred to https://github.com/sngjuk/LayoutGAN
Implementation of the models.
Copyright ©2019-current, Junru Zhong, All rights reserved.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# Draw shape
def pts(name, ts):
print(name + ' shape:', np.shape(ts))
# Stacked relation module
def relation_module(out, unary, psi, phi, wr):
element_num = out.size(1) # TODO: Inspect the output of the encoded feature.
batch_res = []
for bdx, batch in enumerate(out):
f_prime = []
# i, j are two elements.
for idx, i in enumerate(batch):
self_attention = torch.Tensor(torch.zeros(i.size(0)))
for jdx, j in enumerate(batch):
if idx == jdx:
continue
u = F.relu(unary(j))
iv = i.view(i.size(0), 1)
jv = j.view(j.size(0), 1)
dot = (torch.mm((iv * psi).t(), jv * phi)).squeeze()
self_attention += dot * u
f_prime.append(wr * (self_attention / element_num) + i)
batch_res.append(torch.stack(f_prime))
return torch.stack(batch_res)
class Generator(nn.Module):
"""The generator (in GAN)"""
def __init__(self, n_gpu, feature_size, class_num, element_num):
super(Generator, self).__init__()
self.n_gpu = n_gpu
self.feature_size = feature_size
self.class_num = class_num
self.element_num = element_num
# Encoder: two fully connected layers, input layout Z.
self.encoder_fc1 = nn.Linear(feature_size, feature_size * 2) # Guessing? Why is a doubled size?
self.encoder_batch_norm1 = nn.BatchNorm1d(element_num)
self.encoder_fc2 = nn.Linear(feature_size * 2, feature_size * 2 * 2)
self.encoder_batch_norm2 = nn.BatchNorm1d(element_num)
self.encoder_fc3 = nn.Linear(feature_size * 2 * 2, feature_size * 2 * 2)
# Relation model 1
self.relation1_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation1_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation1_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation1_wr = torch.Tensor(torch.rand(1)) # W_r
# Relation model 2
self.relation2_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation2_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation2_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation2_wr = torch.Tensor(torch.rand(1)) # W_r
# Relation model 3
self.relation3_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation3_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation3_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation3_wr = torch.Tensor(torch.rand(1)) # W_r
# Relation model 4
self.relation4_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation4_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation4_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation4_wr = torch.Tensor(torch.rand(1)) # W_r
# Decoder, two fully connected layers.
self.decoder_fc1 = nn.Linear(feature_size * 2 * 2, feature_size * 2)
self.decoder_batch_norm1 = nn.BatchNorm1d(element_num)
self.decoder_fc2 = nn.Linear(feature_size * 2, feature_size)
# Branch
self.branch_fc1 = nn.Linear(feature_size, class_num)
self.branch_fc2 = nn.Linear(feature_size, feature_size - class_num)
def forward(self, input):
# Encoder
out = F.relu(self.encoder_batch_norm1(self.encoder_fc1(input)))
out = F.relu(self.encoder_batch_norm2(self.encoder_fc2(out)))
# out = F.relu(self.encoder_fc1(input))
# out = F.relu(self.encoder_fc2(out))
encoded = torch.sigmoid(self.encoder_fc3(out))
# Stacked relation module
relation_residual_1 = relation_module(encoded, self.relation1_unary, self.relation1_psi,
self.relation1_phi, self.relation1_wr)
relation_residual_2 = relation_module(relation_residual_1, self.relation2_unary, self.relation2_psi,
self.relation2_phi, self.relation2_wr)
relation_residual_3 = relation_module(relation_residual_2, self.relation3_unary, self.relation3_psi,
self.relation3_phi, self.relation3_wr)
relation_residual_4 = relation_module(relation_residual_3, self.relation4_unary, self.relation4_psi,
self.relation4_phi, self.relation4_wr)
# Decoder
out = F.relu(self.decoder_batch_norm1(self.decoder_fc1(relation_residual_4)))
# out = F.relu(self.decoder_fc1(relation_residual_4))
out = F.relu(self.decoder_fc2(out))
# Branch
syn_cls = self.branch_fc1(out)
syn_geo = self.branch_fc2(out)
# Synthesized layout
res = torch.cat((syn_cls, syn_geo), 2)
pts('res', res)
return res
class RelationDiscriminator(nn.Module):
"""The discriminator (in GAN)
Implementation of the relational based discriminator.
"""
def __init__(self, n_gpu, feature_size, class_num, element_num):
super(RelationDiscriminator, self).__init__()
self.n_gpu = n_gpu
self.feature_size = feature_size
self.element_num = element_num
# Encoder: two fully connected layers, input layout Z.
self.encoder_fc1 = nn.Linear(feature_size, feature_size * 2) # Guessing? Why is a doubled size?
self.encoder_batch_norm1 = nn.BatchNorm1d(element_num)
self.encoder_fc2 = nn.Linear(feature_size * 2, feature_size * 2 * 2)
self.encoder_batch_norm2 = nn.BatchNorm1d(element_num)
self.encoder_fc3 = nn.Linear(feature_size * 2 * 2, feature_size * 2 * 2)
# Relation model 1
self.relation1_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation1_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation1_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation1_wr = torch.Tensor(torch.rand(1)) # W_r
# Relation model 2
self.relation2_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation2_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation2_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation2_wr = torch.Tensor(torch.rand(1)) # W_r
# Relation model 3
self.relation3_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation3_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation3_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation3_wr = torch.Tensor(torch.rand(1)) # W_r
# Relation model 4
self.relation4_unary = nn.Linear(feature_size * 2 * 2,
feature_size * 2 * 2) # Unary function U, from "Non-local Neural Network"
self.relation4_psi = torch.Tensor(torch.rand(1)) # \psi
self.relation4_phi = torch.Tensor(torch.rand(1)) # \phi
self.relation4_wr = torch.Tensor(torch.rand(1)) # W_r
# Decoder, two fully connected layers.
self.decoder_fc1 = nn.Linear(feature_size * 2 * 2, feature_size * 2)
self.decoder_batch_norm1 = nn.BatchNorm1d(element_num)
self.decoder_fc2 = nn.Linear(feature_size * 2, feature_size)
# Branch
self.branch_fc1 = nn.Linear(feature_size, class_num)
self.branch_fc2 = nn.Linear(feature_size, feature_size - class_num)
# Max pooling
# self.max_pooling_layer = nn.MaxPool1d(element_num, stride=2)
# Logits
self.logits = nn.Linear(feature_size, 1)
def forward(self, input):
# Encoder
out = F.relu(self.encoder_batch_norm1(self.encoder_fc1(input)))
out = F.relu(self.encoder_batch_norm2(self.encoder_fc2(out)))
# out = F.relu(self.encoder_fc1(input))
# out = F.relu(self.encoder_fc2(out))
encoded = torch.sigmoid(self.encoder_fc3(out))
# Stacked relation module
relation_residual_1 = relation_module(encoded, self.relation1_unary, self.relation1_psi,
self.relation1_phi, self.relation1_wr)
relation_residual_2 = relation_module(relation_residual_1, self.relation2_unary, self.relation2_psi,
self.relation2_phi, self.relation2_wr)
relation_residual_3 = relation_module(relation_residual_2, self.relation3_unary, self.relation3_psi,
self.relation3_phi, self.relation3_wr)
relation_residual_4 = relation_module(relation_residual_3, self.relation4_unary, self.relation4_psi,
self.relation4_phi, self.relation4_wr)
# Decoder
out = F.relu(self.decoder_batch_norm1(self.decoder_fc1(relation_residual_4)))
# out = F.relu(self.decoder_fc1(relation_residual_4))
out = F.relu(self.decoder_fc2(out))
# Branch
syn_cls = self.branch_fc1(out)
syn_geo = self.branch_fc2(out)
# Synthesized layout
res = torch.cat((syn_cls, syn_geo), 2)
# Max pooling
# p_res = self.max_pooling(res, self.max_pooling_layer)
# Logits
# p_red = torch.sigmoid(self.logits(p_res))
p_red = torch.sigmoid(self.logits(res))
pts('p_red', p_red)
return p_red
def max_pooling(self, out, mp):
batch_res = []
for bdx, batch in enumerate(out):
ns = []
for i in range(self.feature_size):
ns.append(batch[:, i:i + 1].squeeze())
ns = torch.stack(ns)
ns = ns.view(1, self.feature_size, self.element_num)
batch_res.append(mp(ns).squeeze())
res = torch.stack(batch_res).view(-1, self.feature_size)
return res
class WireframeDiscriminator(nn.Module):
"""The discriminator (in GAN)
Implement the Wireframe Rendering discriminator.
"""
def __init__(self, n_gpu):
super(WireframeDiscriminator, self).__init__()
self.n_gpu = n_gpu
self.main = nn.Sequential(
)
def forward(self, *input):
pass