forked from EleutherAI/lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patht5_utils.py
104 lines (85 loc) · 2.89 KB
/
t5_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import re
from typing import List
def doc_to_text(x):
text = re.sub(r" X ", " *" + x["span2_text"] + "* ", _wsc_inputs(x))
return "wsc: " + text
def _wsc_inputs(x):
words = x["text"].split(" ")
# We would need some special logic to handle the case where the pronoun is the
# first or last word in the text. None of the examples in WSC seem to have
# this, so we are ignoring these cases.
assert x["span2_index"] > 0
assert x["span2_index"] < len(words)
pronoun_index = x["span2_index"]
def create_input():
assert words[pronoun_index] == x["span2_text"]
return " ".join(
[
" ".join(words[:pronoun_index]),
"X",
" ".join(words[pronoun_index + 1 :]),
]
)
# Handle some special cases.
if (
x["text"]
== 'The boy continued to whip the pony , and eventually the pony threw him over. John laughed out quite loud. "Good for him," he said. '
):
return (
"The boy continued to whip the pony , and eventually the pony threw "
'him over. John laughed out quite loud. "Good for X ," he said.'
)
# Using the span2_index, we get 'use' instead of 'it'.
if (
x["text"]
== "When they had eventually calmed down a bit , and had gotten home, Mr. Farley put the magic pebble in an iron safe . Some day they might want to use it , but really for now, what more could they wish for?"
):
return (
"When they had eventually calmed down a bit , and had gotten home, "
"Mr. Farley put the magic pebble in an iron safe . Some day they might "
"want to use X , but really for now, what more could they wish for?"
)
return create_input()
DETERMINERS = {
"a",
"an",
"few",
"her",
"his",
"each",
"every",
"many",
"much",
"my",
"our",
"some",
"that",
"the",
"their",
"these",
"this",
"those",
"which",
"whose",
"your",
}
def clean(s: str) -> str:
"""Ignore capitalization and determiners."""
s = s.strip().lower()
return " ".join([w for w in s.split(" ") if w not in DETERMINERS])
def process_results(docs: dict, resps: List):
prediction = clean(resps[0])
reference = clean(docs["span1_text"])
if ("'" in prediction) != ("'" in reference):
# referent is "Bob's hat" as predicting the referent.
predicted_referent = False
else:
prediction_words = set(prediction.split(" "))
referent_words = set(reference.split(" "))
# Handle cases where the prediction is "fuzzy bunny" and the referent is
# "bunny".
predicted_referent = prediction_words.issubset(
referent_words
) or referent_words.issubset(prediction_words)
acc = 1.0 if predicted_referent == docs["label"] else 0.0
return {"accuracy": acc}