-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathworld.py
374 lines (335 loc) · 14.7 KB
/
world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import pygame,random
from pygame.locals import *
from pygame import draw
from math import sin, cos, sqrt
# -------------- Utility class -------------------
class Point:
"""
Basic 2-tuple with vector operations.
>>> p = Point(2, 0)
>>> p.norm()
2.0
>>> p.normalize()
>>> p
Point(1.000000, 0.000000)
>>> p.add(Point(0,2))
>>> p
Point(1.000000, 2.000000)
>>> p.mul(3)
>>> p
Point(3.000000, 6.000000)
>>> p.as_tuple()
(3, 6)
>>> Point(1, 2) + Point(2, 2)
Point(3.000000, 4.000000)
>>> Point(4, 1)*(-0.5)
Point(-2.000000, -0.500000)
>>> Point(-1,2).inner_product(Point(3,-1))
-5
"""
def __init__(self, x_or_xy, y=None):
if (y is None):
self.x, self.y = x_or_xy
else:
self.x, self.y = x_or_xy, y
def __add__(self, p):
return Point(self.x + p.x, self.y + p.y)
def add(self, p):
self.x, self.y = self.x + p.x, self.y + p.y
def mul(self, c):
self.x, self.y = self.x*c, self.y*c
def __sub__(self, p):
return Point(self.x - p.x, self.y - p.y)
def __mul__(self, c):
return Point(c*self.x, c*self.y)
def norm(self):
return sqrt(self.x*self.x + self.y*self.y)
def normalize(self):
n = self.norm()
self.x, self.y = self.x/n, self.y/n
def normalized(self):
n = self.norm()
return Point(self.x/n, self.y/n)
def as_tuple(self):
return (int(self.x), int(self.y))
def rotate(self, angle):
cosa, sina = cos(angle), sin(angle)
self.x, self.y = self.x*cosa + self.y*sina, self.x*(-sina) + self.y*cosa
def inner_product(self, v):
return self.x*v.x + self.y*v.y
def in_rect(self, bottomleft, topright):
"""
Returns true if the point is strictly within the rectangle.
The bottomleft and topright correspond the (minx, miny) and (maxx, maxy) corners.
"""
return bottomleft.x < self.x and self.x < topright.x and bottomleft.y < self.y and self.y < topright.y
def __repr__(self):
return "Point(%f, %f)" % (self.x, self.y)
# -------------- Another utility class -------------------
class Wall:
"""
A Wall represents a segment with a normal pointing to the right (in the right-handed coordinates).
It pre-stores the normal and its length to speed-up computations later on.
>>> w = Wall(Point(1, 1), Point(10, 1))
>>> w.len # Length of the segment
9.0
>>> w.v # Direction vector pointing from first to the second point
Point(9.000000, 0.000000)
>>> w.v_normalized # Same thing, normalized to length one
Point(1.000000, 0.000000)
>>> w.normal # Direction vector rotated to the right
Point(0.000000, -1.000000)
>>> w.dist_to_point(Point(3, 1)) # Point lying on the segment
0.0
>>> w.dist_to_point(Point(3, 0)) # Point lying to the right
1.0
>>> w.dist_to_point(Point(3, 2)) # Point lying to the left
-1.0
"""
def __init__(self, p1, p2):
self.p1 = p1
self.p2 = p2
self.v = p2 - p1
self.len = self.v.norm()
self.v_normalized = self.v * (1/self.len)
self.normal = Point(self.v_normalized.y, -self.v_normalized.x) # The normal is a unit vector pointing "inside" the walled area
def dist_to_point(self, pt):
pp = pt - self.p1
xprod = pp.x*self.v.y - pp.y*self.v.x
return xprod/self.len
def __repr__(self):
return "Wall(%s, %s) of length %f" % (str(self.p1), str(self.p2), self.len)
# -------------- The world is the root controller for simulation and drawing -------------------
class World:
"""
The World represents the football field, where the robot and the balls live.
It's main routines are:
* add_object - registers a new object with the world.
* simulate - perform a single simulation step. Typically about 50 steps should be done between frames.
* draw - render the world on a pygame surface.
Here's how it goes typically
>>> import pygame
>>> from telliskivi import Robot
>>> (_1, _2) = pygame.init()
>>> window = pygame.display.set_mode((1060, 760)) # This is the recommended size of the window (field + contestant area - (5300 x 3800 mm))
>>> screen = pygame.display.get_surface()
>>> w = World(screen)
>>> w.width
900
>>> w.height
600
>>> w.add_object(Ball(Point(300, 300))) # Add a ball at position (300, 300)
>>> w.add_object(Robot(w, "Robot", "TOPLEFT")) # Add a robot
>>> for i in range(50): # Simulate a bit
... w.simulate()
>>> w.draw(screen) # Draw on screen
See also: WorldObject
"""
def __init__(self, screen):
# Actual size of the field is 4500x3000. We make it 900x600 in pixels, which means each pixel is 5mm in reality
self.width, self.height = 900, 600
self.cx, self.cy = self.width/2, self.height/2
sw, sh = screen.get_size()
scx, scy = sw/2, sh/2
left, top = scx - self.width/2, scy - self.height/2
# Create a sub-image, containing the whole of the world in it.
self.screen = screen
self.font = pygame.font.Font(None, 60)
self.scoreLeft = 0
self.scoreRight = 0
self.field = screen.subsurface(Rect(left, top, self.width, self.height))
self.objects = [] # This will hold all the objects in the world
# Walls listed in clockwise order (in the right-hand coords)
self.walls = [Wall(Point(0,0), Point(0,self.height)), \
Wall(Point(0,self.height), Point(self.width, self.height)),\
Wall(Point(self.width, self.height), Point(self.width, 0)),\
Wall(Point(self.width, 0), Point(0, 0))]
def draw(self, screen):
# The field is a rect in the center of the screen
BLACK = (0,0,0)
WHITE = (255,255,255)
GREEN = (43,252,43)
self.field.fill(GREEN) # Green fill
draw.rect(self.field, WHITE, self.field.get_rect(), 20) # White border
draw.rect(self.field, BLACK, self.field.get_rect(), 1) # Black border
draw.rect(self.field, BLACK, (10, 10, self.cx-5-10, self.height-10-10), 1) # Black square (left)
draw.rect(self.field, BLACK, (self.cx + 5, 10, self.cx-5-10, self.height-10-10), 1) # Black square (right)
draw.circle(self.field, WHITE, (self.cx, self.cy), 80, 10) # Central circle (white)
draw.circle(self.field, BLACK, (self.cx, self.cy), 80-10, 1) # Central circle (black, inner)
draw.circle(self.field, BLACK, (self.cx, self.cy), 80, 1) # Central circle (black, outer)
draw.line(self.field, WHITE, (self.cx-1, 0+1), (self.cx-1, self.height-2),10) # Central divider line (white)
# Arcs
#1
draw.arc(self.field, WHITE, (10 - 100, 265 - 100, 200, 200), 0, 3.1415/2, 10) # Left goal, upper arc, white filling
draw.arc(self.field, BLACK, (10 - 100, 265 - 100, 200, 200), 0, 3.1415/2, 1) # Left goal, upper arc, black, outer
draw.arc(self.field, BLACK, (10 - 100 + 10, 265 - 100 + 10, 200 - 20, 200 - 20), 0, 3.1415/2, 1) # Left goal, upper arc, black inner
#2
draw.arc(self.field, WHITE, (10 - 100, 265 - 100 + 70, 200, 200), 3*3.1415/2, 2*3.1415, 10) # Left goal, lower arc, white filling
draw.arc(self.field, BLACK, (10 - 100, 265 - 100 + 70, 200, 200), 3*3.1415/2, 2*3.1415, 1) # Left goal, lower arc, black, outer
draw.arc(self.field, BLACK, (10 - 100 + 10, 265 - 100 + 10 + 70, 200 - 20, 200 - 20), 3*3.1415/4, 2*3.1415, 1) # Left goal, lower arc, black inner
#3
draw.arc(self.field, WHITE, (self.width - 10 - 100, 265 - 100, 200, 200), 3.1415/2, 3.1415, 10) # Right goal, upper arc, white filling
draw.arc(self.field, BLACK, (self.width - 10 - 100, 265 - 100, 200, 200), 3.1415/2, 3.1415, 1) # Right goal, upper arc, black, outer
draw.arc(self.field, BLACK, (self.width - 10 - 100 + 10, 265 - 100 + 10, 200 - 20, 200 - 20), 3.1415/2, 3.1415, 1) # Left goal, upper arc, black inner
#4
draw.arc(self.field, WHITE, (self.width - 10 - 100, 265 - 100 + 70, 200, 200), 3.1415, 3*3.1415/2, 10) # Right goal, lower arc, white filling
draw.arc(self.field, BLACK, (self.width - 10 - 100, 265 - 100 + 70, 200, 200), 3.1415, 3*3.1415/2, 1) # Right goal, lower arc, black, outer
draw.arc(self.field, BLACK, (self.width - 10 - 100 + 10, 265 - 100 + 10 + 70, 200 - 20, 200 - 20), 3.1415, 3*3.1415/2, 1) # Right goal, lower arc, black inner
# Arc connectors
draw.line(self.field, WHITE, (10 + 100 - 5, 265), (10 + 100 - 5, 265 + 70), 10) # Left goal, arc connector, white filling
draw.line(self.field, BLACK, (10 + 100 - 10, 265), (10 + 100 - 10, 265 + 70), 1) # Left goal, arc connector, black inner
draw.line(self.field, BLACK, (10 + 100, 265), (10 + 100, 265 + 70), 1) # Left goal, arc connector, black outer
draw.line(self.field, WHITE, (self.width - 10 - 100 + 5, 265), (self.width - 10 - 100 + 5, 265 + 70), 10) # Right goal, arc connector, white filling
draw.line(self.field, BLACK, (self.width - 10 - 100 + 10, 265), (self.width - 10 - 100 + 10, 265 + 70), 1) # Right goal, arc connector, black inner
draw.line(self.field, BLACK, (self.width - 10 - 100, 265), (self.width - 10 - 100, 265 + 70), 1) # Right goal, arc connector, black outer
# Left goal
draw.rect(self.screen, (163, 163, 46), (self.field.get_offset()[0]-50, self.field.get_offset()[1]+self.cy-70, 50+10, 140), 0)
text = self.font.render(str(self.scoreLeft), True, BLACK, (163, 163, 46))
textRect = text.get_rect()
# Center the rectangle
textRect.centerx = self.field.get_offset()[0]-50 + 25 + 5
textRect.centery = self.field.get_offset()[1]+self.cy
# Blit the text
self.screen.blit(text, textRect)
# Right goal
draw.rect(self.screen, (16, 57, 125), (self.field.get_offset()[0]+self.width-10, self.field.get_offset()[1]+self.cy-70, 50+10, 140), 0)
text = self.font.render(str(self.scoreRight), True, WHITE, (16, 57, 125))
textRect = text.get_rect()
textRect.centerx = self.field.get_offset()[0]+self.width - 10 + 30
textRect.centery = self.field.get_offset()[1]+self.cy
self.screen.blit(text, textRect)
# Cross in the middle
#draw.line(self.field, BLACK, (self.cx-10, self.cy), (self.cx+10, self.cy))
#draw.line(self.field, BLACK, (self.cx, self.cy-10), (self.cx, self.cy+10))
for o in self.objects:
o.draw(self.field)
def add_object(self, obj):
"""The world manages a set of objects. Each object must have particular properties"""
self.objects.append(obj)
def simulate(self):
for o in self.objects:
o.simulate()
# Resolve collisions
# First the walls
for o in self.objects:
for w in self.walls:
o.wall_check(w)
# Then the collision among the objects
for i in range(len(self.objects)):
for j in range(0, i):
self.objects[i].collision_check(self.objects[j])
# Finally, see whether any of the balls fall into goals
i = 0
while i < len(self.objects):
if (not isinstance(self.objects[i], Ball)):
i += 1
else:
# Does it fall into any of the goals?
if self.objects[i].center.y > self.cy - 70 and self.objects[i].center.y < self.cy + 70:
if self.objects[i].center.x < 5 + self.objects[i].radius:
# Left goal:
del self.objects[i]
self.scoreLeft += 1
elif self.objects[i].center.x > self.width - 5 - self.objects[i].radius:
# Right goal
del self.objects[i]
self.scoreRight += 1
else:
i+=1
else:
i+=1
class WorldObject:
"""
This is a sample "root class" that can be used as an item in the world,
(i.e. you can use world.add_object(o) for instances complying with this interface).
You don't have to inherit from this class, but you have to make sure the conditions listed here
are satisfied.
"""
def __init__(self, center, radius):
"Every world object must have a center and radius for fallback collision detection. Note that coordinates are relative to the world."
self.center = center
self.radius = radius
def draw(self, screen):
"Draws the object on screen"
pass
def simulate(self):
"Performs one step of object physics simulation. This is ALWAYS called before wall_check and collision_check"
pass
def wall_check(self, w):
"""
Given a wall object, checks for a collision and updates state, if necessary.
Always called after simulate (i.e. you may precompute something there).
"""
pass
def collision_check(self, o):
"""
Given any non-wall object, checks for a collision and updates state of this and colliding object, if necessary.
Always called after simulate (i.e. may precompute something there).
"""
pass
# -------------- "Ball" and "Robot" are objects in the world -------------------
# Both know how to draw themselves, how to simulate themselves and how to react to
# collisions with walls and other objects
# Robot is given in <your_robot_name>.py
class Ball(WorldObject):
"""The ball is the most basic world object"""
def __init__(self, center, radius = 4.3): # Actual radius is 43/2 mm, i.e. 4.3 pixels
WorldObject.__init__(self, center, radius)
self.v = Point(0, 0) # Speed
def draw(self, screen):
ORANGE = (255,60,0)
draw.circle(screen, ORANGE, self.center.as_tuple(), int(self.radius))
def simulate(self):
"Ball's movement is simple linear integration with coulomb friction"
# We have measured that a typical ball has a friction deceleration of about
# -0.25 m/s^2. This is equal to 250 mm / 1mln ms^2 = 50pixels / 1000000 ms^2 = 0.00005 px/ms^2
FRICTION_FORCE = 0.00005
n = self.v.norm()
if (n > 0):
# Move
self.center.add(self.v)
# Account for friction
new_n = n - FRICTION_FORCE # Coulomb friction reduces the length of the vector uniformly each step
if (new_n < 0):
new_n = 0
self.v.mul(new_n/n)
def wall_check(self, w):
"""
W is a Wall object. We may safely assume that our location is always to the right of the wall (i.e. distance should be positive).
"""
# Compute distance to the wall
d = w.dist_to_point(self.center)
if (d < self.radius):
# Nudge so that we are always to the right side of the ball
self.center.add(w.normal*(self.radius - d))
# If our velocity vector is pointing towards the wall, reverse it
wall_v = self.v.inner_product(w.normal)
if wall_v < 0:
self.v.add(w.normal*(-2*wall_v))
def collision_check(self, obj):
# If object is not a Ball, then let him do the collision computation
if (not isinstance(obj, Ball)):
return obj.collision_check(self) # NB: Only balls are allowed to do this trick, otherwise we'll get an infinite cycle here
else:
# It is a ball. First see whether we are nearby
direction = obj.center - self.center # Arrow pointing from "us" to "them"
dist = direction.norm()
if (dist < self.radius + obj.radius):
# Yes, it's a collision. Resolve it.
# We assume all balls of equal weight, hence the collision resolution is fairly simple.
# First we nudge the offending ball slightly to remove the collision
direction_normalized = direction * (1/dist)
obj.center.add(direction_normalized*(self.radius + obj.radius - dist))
# Next let us look at that guy's speed from our perspective
his_v = obj.v - self.v
# Is it moving towards us?
towards_v = his_v.inner_product(direction_normalized)
if (towards_v < 0):
# Yep, we must fix this. What we do is we steal this component of his velocity
steal_v = direction_normalized*towards_v
obj.v.add(steal_v*(-1))
self.v.add(steal_v)
if __name__ == "__main__":
# Run doctests (hint, run with -v for verbose output)
import doctest
doctest.testmod()