forked from open-mmlab/OpenPCDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cbgs_voxel0075_voxelnext.yaml
156 lines (125 loc) · 4.44 KB
/
cbgs_voxel0075_voxelnext.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
CLASS_NAMES: ['car','truck', 'construction_vehicle', 'bus', 'trailer',
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/nuscenes_dataset.yaml
POINT_CLOUD_RANGE: [-54.0, -54.0, -5.0, 54.0, 54.0, 3.0]
INFO_PATH: {
'train': [nuscenes_infos_10sweeps_train.pkl],
'test': [nuscenes_infos_10sweeps_val.pkl],
}
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
DB_INFO_PATH:
- nuscenes_dbinfos_10sweeps_withvelo.pkl
USE_SHARED_MEMORY: False #True # set it to True to speed up (it costs about 15GB shared memory)
DB_DATA_PATH:
- nuscenes_dbinfos_10sweeps_withvelo_global.pkl.npy
PREPARE: {
filter_by_min_points: [
'car:5','truck:5', 'construction_vehicle:5', 'bus:5', 'trailer:5',
'barrier:5', 'motorcycle:5', 'bicycle:5', 'pedestrian:5', 'traffic_cone:5'
],
}
SAMPLE_GROUPS: [
'car:2','truck:2', 'construction_vehicle:2', 'bus:2', 'trailer:2',
'barrier:2', 'motorcycle:2', 'bicycle:2', 'pedestrian:2', 'traffic_cone:2'
]
NUM_POINT_FEATURES: 5
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: True
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.9, 1.1]
- NAME: random_world_translation
NOISE_TRANSLATE_STD: [0.5, 0.5, 0.5]
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.075, 0.075, 0.2]
MAX_POINTS_PER_VOXEL: 10
MAX_NUMBER_OF_VOXELS: {
'train': 120000,
'test': 160000
}
MODEL:
NAME: VoxelNeXt
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelResBackBone8xVoxelNeXt
DENSE_HEAD:
NAME: VoxelNeXtHead
CLASS_AGNOSTIC: False
INPUT_FEATURES: 128
CLASS_NAMES_EACH_HEAD: [
['car'],
['truck', 'construction_vehicle'],
['bus', 'trailer'],
['barrier'],
['motorcycle', 'bicycle'],
['pedestrian', 'traffic_cone'],
]
SHARED_CONV_CHANNEL: 128
KERNEL_SIZE_HEAD: 1
USE_BIAS_BEFORE_NORM: True
NUM_HM_CONV: 2
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'center_z', 'dim', 'rot', 'vel']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'center_z': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
'vel': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 8
NUM_MAX_OBJS: 500
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 0.25,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0]
}
POST_PROCESSING:
SCORE_THRESH: 0.1
POST_CENTER_LIMIT_RANGE: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0]
MAX_OBJ_PER_SAMPLE: 500
NMS_CONFIG:
NMS_TYPE: nms_gpu
NMS_THRESH: 0.2
NMS_PRE_MAXSIZE: 1000
NMS_POST_MAXSIZE: 83
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
EVAL_METRIC: kitti
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 4
NUM_EPOCHS: 20
OPTIMIZER: adam_onecycle
LR: 0.001
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10