-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
569 lines (491 loc) · 22.5 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
#include <array>
#include <SDL.h>
#include <SDL_syswm.h>
#include <SDL_vulkan.h>
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_macos.h>
#include "spirv_shaders_embedded_spv.h"
std::string get_result_string (VkResult vulkan_result)
{
switch (vulkan_result)
{
case VK_SUCCESS:
return "VK_SUCCESS";
case VK_ERROR_OUT_OF_HOST_MEMORY:
return "VK_ERROR_OUT_OF_HOST_MEMORY";
case VK_ERROR_OUT_OF_DEVICE_MEMORY:
return "VK_ERROR_OUT_OF_DEVICE_MEMORY";
case VK_ERROR_INITIALIZATION_FAILED:
return "VK_ERROR_INITIALIZATION_FAILED";
case VK_ERROR_LAYER_NOT_PRESENT:
return "VK_ERROR_LAYER_NOT_PRESENT";
case VK_ERROR_EXTENSION_NOT_PRESENT:
return "VK_ERROR_EXTENSION_NOT_PRESENT";
case VK_ERROR_INCOMPATIBLE_DRIVER:
return "VK_ERROR_INCOMPATIBLE_DRIVER";
default:
return "UNKNOWN RESULT = " + vulkan_result;
}
}
#define CHECK_VULKAN(FN) \
{ \
VkResult r = FN; \
if (r != VK_SUCCESS) {\
std::string message = get_result_string(r);\
std::cout << #FN << " failed with message " << message << "\n" << std::flush; \
throw std::runtime_error(#FN " failed!"); \
} \
}
int win_width = 1280;
int win_height = 720;
int main(int argc, const char **argv) {
if (SDL_Init(SDL_INIT_EVERYTHING) != 0) {
std::cerr << "Failed to init SDL: " << SDL_GetError() << "\n";
return -1;
}
SDL_Window* window = SDL_CreateWindow("SDL2 + Vulkan",
SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED, win_width, win_height, SDL_WINDOW_VULKAN);
{
uint32_t extension_count = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
std::cout << "num extensions: " << extension_count << "\n";
std::vector<VkExtensionProperties> extensions(extension_count, VkExtensionProperties{});
vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, extensions.data());
std::cout << "Available extensions:\n";
for (const auto& e : extensions) {
std::cout << e.extensionName << "\n";
}
}
const std::array<const char*, 1> validation_layers = {
"VK_LAYER_KHRONOS_validation"
};
// Make the Vulkan Instance
VkInstance vk_instance = VK_NULL_HANDLE;
{
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pApplicationName = "engine";
app_info.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
app_info.pEngineName = "glengine";
app_info.engineVersion = VK_MAKE_VERSION(0, 1, 0);
app_info.apiVersion = VK_API_VERSION_1_2;
const std::array<const char*, 3> extension_names = {
VK_KHR_SURFACE_EXTENSION_NAME, VK_MVK_MACOS_SURFACE_EXTENSION_NAME,
"VK_KHR_portability_enumeration" // macOS require
};
VkInstanceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
create_info.pApplicationInfo = &app_info;
create_info.enabledExtensionCount = extension_names.size();
create_info.ppEnabledExtensionNames = extension_names.data();
create_info.enabledLayerCount = validation_layers.size();
create_info.ppEnabledLayerNames = validation_layers.data();
#ifdef __APPLE__
// https://github.com/KhronosGroup/MoltenVK/blob/main/Docs/MoltenVK_Runtime_UserGuide.md#interacting-with-the-moltenvk-runtime
create_info.flags |= VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR;
#endif //__APPLE__
CHECK_VULKAN(vkCreateInstance(&create_info, nullptr, &vk_instance));
}
VkSurfaceKHR vk_surface = VK_NULL_HANDLE;
{
SDL_Vulkan_CreateSurface(window, vk_instance, &vk_surface);
if(vk_surface == NULL) {
std::cout << "ERROR: vk_surface is null" << std::endl;
exit(1);
}
}
VkPhysicalDevice vk_physical_device = VK_NULL_HANDLE;
{
uint32_t device_count = 0;
vkEnumeratePhysicalDevices(vk_instance, &device_count, nullptr);
std::cout << "Found " << device_count << " devices\n";
std::vector<VkPhysicalDevice> devices(device_count, VkPhysicalDevice{});
vkEnumeratePhysicalDevices(vk_instance, &device_count, devices.data());
const bool has_discrete_gpu = std::find_if(devices.begin(), devices.end(),
[](const VkPhysicalDevice& d) {
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(d, &properties);
return properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
}) != devices.end();
for (const auto &d : devices) {
VkPhysicalDeviceProperties properties;
VkPhysicalDeviceFeatures features;
vkGetPhysicalDeviceProperties(d, &properties);
vkGetPhysicalDeviceFeatures(d, &features);
std::cout << properties.deviceName << "\n";
// Check for RTX support
uint32_t extension_count = 0;
vkEnumerateDeviceExtensionProperties(d, nullptr, &extension_count, nullptr);
std::cout << "num extensions: " << extension_count << "\n";
std::vector<VkExtensionProperties> extensions(extension_count, VkExtensionProperties{});
vkEnumerateDeviceExtensionProperties(d, nullptr, &extension_count, extensions.data());
std::cout << "Device available extensions:\n";
for (const auto& e : extensions) {
std::cout << e.extensionName << "\n";
}
if (has_discrete_gpu && properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) {
vk_physical_device = d;
break;
} else if (!has_discrete_gpu && properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) {
vk_physical_device = d;
break;
}
}
}
VkDevice vk_device = VK_NULL_HANDLE;
VkQueue vk_queue = VK_NULL_HANDLE;
uint32_t graphics_queue_index = -1;
{
uint32_t num_queue_families = 0;
vkGetPhysicalDeviceQueueFamilyProperties(vk_physical_device, &num_queue_families, nullptr);
std::vector<VkQueueFamilyProperties> family_props(num_queue_families, VkQueueFamilyProperties{});
vkGetPhysicalDeviceQueueFamilyProperties(vk_physical_device, &num_queue_families, family_props.data());
for (uint32_t i = 0; i < num_queue_families; ++i) {
// We want present and graphics on the same queue (kind of assume this will be supported on any discrete GPU)
VkBool32 present_support = false;
vkGetPhysicalDeviceSurfaceSupportKHR(vk_physical_device, i, vk_surface, &present_support);
if (present_support && (family_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) {
graphics_queue_index = i;
}
}
std::cout << "Graphics queue is " << graphics_queue_index << "\n";
const float queue_priority = 1.f;
VkDeviceQueueCreateInfo queue_create_info = {};
queue_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_create_info.queueFamilyIndex = graphics_queue_index;
queue_create_info.queueCount = 1;
queue_create_info.pQueuePriorities = &queue_priority;
VkPhysicalDeviceFeatures device_features = {};
// TODO: RTX feature
const std::array<const char*, 1> device_extensions = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME
};
VkDeviceCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
create_info.queueCreateInfoCount = 1;
create_info.pQueueCreateInfos = &queue_create_info;
create_info.enabledLayerCount = validation_layers.size();
create_info.ppEnabledLayerNames = validation_layers.data();
create_info.enabledExtensionCount = device_extensions.size();
create_info.ppEnabledExtensionNames = device_extensions.data();
create_info.pEnabledFeatures = &device_features;
CHECK_VULKAN(vkCreateDevice(vk_physical_device, &create_info, nullptr, &vk_device));
vkGetDeviceQueue(vk_device, graphics_queue_index, 0, &vk_queue);
}
// Setup swapchain, assume a real GPU so don't bother querying the capabilities, just get what we want
VkExtent2D swapchain_extent = {};
swapchain_extent.width = win_width;
swapchain_extent.height = win_height;
const VkFormat swapchain_img_format = VK_FORMAT_B8G8R8A8_UNORM;
VkSwapchainKHR vk_swapchain = VK_NULL_HANDLE;
std::vector<VkImage> swapchain_images;
std::vector<VkImageView> swapchain_image_views;
{
VkSwapchainCreateInfoKHR create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
create_info.surface = vk_surface;
create_info.minImageCount = 2;
create_info.imageFormat = swapchain_img_format;
create_info.imageColorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
create_info.imageExtent = swapchain_extent;
create_info.imageArrayLayers = 1;
create_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
// We only have 1 queue
create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
create_info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
create_info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
create_info.presentMode = VK_PRESENT_MODE_FIFO_KHR;
create_info.clipped = true;
create_info.oldSwapchain = VK_NULL_HANDLE;
CHECK_VULKAN(vkCreateSwapchainKHR(vk_device, &create_info, nullptr, &vk_swapchain));
// Get the swap chain images
uint32_t num_swapchain_imgs = 0;
vkGetSwapchainImagesKHR(vk_device, vk_swapchain, &num_swapchain_imgs, nullptr);
swapchain_images.resize(num_swapchain_imgs);
vkGetSwapchainImagesKHR(vk_device, vk_swapchain, &num_swapchain_imgs, swapchain_images.data());
for (const auto &img : swapchain_images) {
VkImageViewCreateInfo view_create_info = {};
view_create_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_create_info.image = img;
view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_create_info.format = swapchain_img_format;
view_create_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
view_create_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
view_create_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
view_create_info.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
view_create_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view_create_info.subresourceRange.baseMipLevel = 0;
view_create_info.subresourceRange.levelCount = 1;
view_create_info.subresourceRange.baseArrayLayer = 0;
view_create_info.subresourceRange.layerCount = 1;
VkImageView img_view;
CHECK_VULKAN(vkCreateImageView(vk_device, &view_create_info, nullptr, &img_view));
swapchain_image_views.push_back(img_view);
}
}
// Build the pipeline
VkPipelineLayout vk_pipeline_layout;
VkRenderPass vk_render_pass;
VkPipeline vk_pipeline;
{
VkShaderModule vertex_shader_module = VK_NULL_HANDLE;
VkShaderModuleCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
create_info.codeSize = sizeof(vert_spv);
create_info.pCode = vert_spv;
CHECK_VULKAN(vkCreateShaderModule(vk_device, &create_info, nullptr, &vertex_shader_module));
VkPipelineShaderStageCreateInfo vertex_stage = {};
vertex_stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vertex_stage.stage = VK_SHADER_STAGE_VERTEX_BIT;
vertex_stage.module = vertex_shader_module;
vertex_stage.pName = "main";
VkShaderModule fragment_shader_module = VK_NULL_HANDLE;
create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
create_info.codeSize = sizeof(frag_spv);
create_info.pCode = frag_spv;
CHECK_VULKAN(vkCreateShaderModule(vk_device, &create_info, nullptr, &fragment_shader_module));
VkPipelineShaderStageCreateInfo fragment_stage = {};
fragment_stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fragment_stage.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragment_stage.module = fragment_shader_module;
fragment_stage.pName = "main";
std::array<VkPipelineShaderStageCreateInfo, 2> shader_stages = { vertex_stage, fragment_stage };
// Vertex data hard-coded in vertex shader
VkPipelineVertexInputStateCreateInfo vertex_input_info = {};
vertex_input_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_input_info.vertexBindingDescriptionCount = 0;
vertex_input_info.vertexAttributeDescriptionCount = 0;
// Primitive type
VkPipelineInputAssemblyStateCreateInfo input_assembly = {};
input_assembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
input_assembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
input_assembly.primitiveRestartEnable = VK_FALSE;
// Viewport config
VkViewport viewport = {};
viewport.x = 0.0f;
viewport.y = 0.0f;
viewport.width = win_width;
viewport.height = win_height;
viewport.minDepth = 0.0f;
viewport.maxDepth = 1.0f;
// Scissor rect config
VkRect2D scissor = {};
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent = swapchain_extent;
VkPipelineViewportStateCreateInfo viewport_state_info = {};
viewport_state_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewport_state_info.viewportCount = 1;
viewport_state_info.pViewports = &viewport;
viewport_state_info.scissorCount = 1;
viewport_state_info.pScissors = &scissor;
VkPipelineRasterizationStateCreateInfo rasterizer_info = {};
rasterizer_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer_info.depthClampEnable = VK_FALSE;
rasterizer_info.rasterizerDiscardEnable = VK_FALSE;
rasterizer_info.polygonMode = VK_POLYGON_MODE_FILL;
rasterizer_info.lineWidth = 1.f;
rasterizer_info.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer_info.frontFace = VK_FRONT_FACE_CLOCKWISE;
rasterizer_info.depthBiasEnable = VK_FALSE;
VkPipelineMultisampleStateCreateInfo multisampling = {};
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState blend_mode = {};
blend_mode.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
blend_mode.blendEnable = VK_FALSE;
VkPipelineColorBlendStateCreateInfo blend_info = {};
blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
blend_info.logicOpEnable = VK_FALSE;
blend_info.attachmentCount = 1;
blend_info.pAttachments = &blend_mode;
VkPipelineLayoutCreateInfo pipeline_info = {};
pipeline_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
CHECK_VULKAN(vkCreatePipelineLayout(vk_device, &pipeline_info, nullptr, &vk_pipeline_layout));
VkAttachmentDescription color_attachment = {};
color_attachment.format = swapchain_img_format;
color_attachment.samples = VK_SAMPLE_COUNT_1_BIT;
color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
color_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
color_attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
color_attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
color_attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
color_attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
VkAttachmentReference color_attachment_ref = {};
color_attachment_ref.attachment = 0;
color_attachment_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &color_attachment_ref;
VkRenderPassCreateInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
render_pass_info.attachmentCount = 1;
render_pass_info.pAttachments = &color_attachment;
render_pass_info.subpassCount = 1;
render_pass_info.pSubpasses = &subpass;
CHECK_VULKAN(vkCreateRenderPass(vk_device, &render_pass_info, nullptr, &vk_render_pass));
VkGraphicsPipelineCreateInfo graphics_pipeline_info = {};
graphics_pipeline_info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
graphics_pipeline_info.stageCount = 2;
graphics_pipeline_info.pStages = shader_stages.data();
graphics_pipeline_info.pVertexInputState = &vertex_input_info;
graphics_pipeline_info.pInputAssemblyState = &input_assembly;
graphics_pipeline_info.pViewportState = &viewport_state_info;
graphics_pipeline_info.pRasterizationState = &rasterizer_info;
graphics_pipeline_info.pMultisampleState = &multisampling;
graphics_pipeline_info.pColorBlendState = &blend_info;
graphics_pipeline_info.layout = vk_pipeline_layout;
graphics_pipeline_info.renderPass = vk_render_pass;
graphics_pipeline_info.subpass = 0;
CHECK_VULKAN(vkCreateGraphicsPipelines(vk_device, VK_NULL_HANDLE, 1, &graphics_pipeline_info, nullptr, &vk_pipeline));
vkDestroyShaderModule(vk_device, vertex_shader_module, nullptr);
vkDestroyShaderModule(vk_device, fragment_shader_module, nullptr);
}
// Setup framebuffers
std::vector<VkFramebuffer> framebuffers;
for (const auto &v : swapchain_image_views) {
std::array<VkImageView, 1> attachments = { v };
VkFramebufferCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
create_info.renderPass = vk_render_pass;
create_info.attachmentCount = 1;
create_info.pAttachments = attachments.data();
create_info.width = win_width;
create_info.height = win_height;
create_info.layers = 1;
VkFramebuffer fb = VK_NULL_HANDLE;
CHECK_VULKAN(vkCreateFramebuffer(vk_device, &create_info, nullptr, &fb));
framebuffers.push_back(fb);
}
// Setup the command pool
VkCommandPool vk_command_pool;
{
VkCommandPoolCreateInfo create_info = {};
create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
create_info.queueFamilyIndex = graphics_queue_index;
CHECK_VULKAN(vkCreateCommandPool(vk_device, &create_info, nullptr, &vk_command_pool));
}
std::vector<VkCommandBuffer> command_buffers(framebuffers.size(), VkCommandBuffer{});
{
VkCommandBufferAllocateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
info.commandPool = vk_command_pool;
info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
info.commandBufferCount = command_buffers.size();
CHECK_VULKAN(vkAllocateCommandBuffers(vk_device, &info, command_buffers.data()));
}
// Now record the rendering commands (TODO: Could also do this pre-recording in the DXR backend
// of rtobj. Will there be much perf. difference?)
for (size_t i = 0; i < command_buffers.size(); ++i) {
auto& cmd_buf = command_buffers[i];
VkCommandBufferBeginInfo begin_info = {};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
CHECK_VULKAN(vkBeginCommandBuffer(cmd_buf, &begin_info));
VkRenderPassBeginInfo render_pass_info = {};
render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
render_pass_info.renderPass = vk_render_pass;
render_pass_info.framebuffer = framebuffers[i];
render_pass_info.renderArea.offset.x = 0;
render_pass_info.renderArea.offset.y = 0;
render_pass_info.renderArea.extent = swapchain_extent;
VkClearValue clear_color = { 0.f, 0.f, 0.f, 1.f };
render_pass_info.clearValueCount = 1;
render_pass_info.pClearValues = &clear_color;
vkCmdBeginRenderPass(cmd_buf, &render_pass_info, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, vk_pipeline);
// Draw our "triangle" embedded in the shader
vkCmdDraw(cmd_buf, 3, 1, 0, 0);
vkCmdEndRenderPass(cmd_buf);
CHECK_VULKAN(vkEndCommandBuffer(cmd_buf));
}
VkSemaphore img_avail_semaphore = VK_NULL_HANDLE;
VkSemaphore render_finished_semaphore = VK_NULL_HANDLE;
{
VkSemaphoreCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
CHECK_VULKAN(vkCreateSemaphore(vk_device, &info, nullptr, &img_avail_semaphore));
CHECK_VULKAN(vkCreateSemaphore(vk_device, &info, nullptr, &render_finished_semaphore));
}
// We use a fence to wait for the rendering work to finish
VkFence vk_fence = VK_NULL_HANDLE;
{
VkFenceCreateInfo info = {};
info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
CHECK_VULKAN(vkCreateFence(vk_device, &info, nullptr, &vk_fence));
}
std::cout << "Running loop\n";
bool done = false;
while (!done) {
SDL_Event event;
while (SDL_PollEvent(&event)) {
if (event.type == SDL_QUIT) {
done = true;
}
if (event.type == SDL_KEYDOWN && event.key.keysym.sym == SDLK_ESCAPE) {
done = true;
}
if (event.type == SDL_WINDOWEVENT && event.window.event == SDL_WINDOWEVENT_CLOSE
&& event.window.windowID == SDL_GetWindowID(window)) {
done = true;
}
}
// Get an image from the swap chain
uint32_t img_index = 0;
CHECK_VULKAN(vkAcquireNextImageKHR(vk_device, vk_swapchain, std::numeric_limits<uint64_t>::max(),
img_avail_semaphore, VK_NULL_HANDLE, &img_index));
// We need to wait for the image before we can run the commands to draw to it, and signal
// the render finished one when we're done
const std::array<VkSemaphore, 1> wait_semaphores = { img_avail_semaphore };
const std::array<VkSemaphore, 1> signal_semaphores = { render_finished_semaphore };
const std::array<VkPipelineStageFlags, 1> wait_stages = { VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT };
CHECK_VULKAN(vkResetFences(vk_device, 1, &vk_fence));
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.waitSemaphoreCount = wait_semaphores.size();
submit_info.pWaitSemaphores = wait_semaphores.data();
submit_info.pWaitDstStageMask = wait_stages.data();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &command_buffers[img_index];
submit_info.signalSemaphoreCount = signal_semaphores.size();
submit_info.pSignalSemaphores = signal_semaphores.data();
CHECK_VULKAN(vkQueueSubmit(vk_queue, 1, &submit_info, vk_fence));
// Finally, present the updated image in the swap chain
std::array<VkSwapchainKHR, 1> present_chain = { vk_swapchain };
VkPresentInfoKHR present_info = {};
present_info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
present_info.waitSemaphoreCount = signal_semaphores.size();
present_info.pWaitSemaphores = signal_semaphores.data();
present_info.swapchainCount = present_chain.size();
present_info.pSwapchains = present_chain.data();
present_info.pImageIndices = &img_index;
CHECK_VULKAN(vkQueuePresentKHR(vk_queue, &present_info));
// Wait for the frame to finish
CHECK_VULKAN(vkWaitForFences(vk_device, 1, &vk_fence, true, std::numeric_limits<uint64_t>::max()));
}
vkDestroySemaphore(vk_device, img_avail_semaphore, nullptr);
vkDestroySemaphore(vk_device, render_finished_semaphore, nullptr);
vkDestroyFence(vk_device, vk_fence, nullptr);
vkDestroyCommandPool(vk_device, vk_command_pool, nullptr);
vkDestroySwapchainKHR(vk_device, vk_swapchain, nullptr);
for (auto &fb : framebuffers) {
vkDestroyFramebuffer(vk_device, fb, nullptr);
}
vkDestroyPipeline(vk_device, vk_pipeline, nullptr);
vkDestroyRenderPass(vk_device, vk_render_pass, nullptr);
vkDestroyPipelineLayout(vk_device, vk_pipeline_layout, nullptr);
for (auto &v : swapchain_image_views) {
vkDestroyImageView(vk_device, v, nullptr);
}
vkDestroySurfaceKHR(vk_instance, vk_surface, nullptr);
vkDestroyDevice(vk_device, nullptr);
vkDestroyInstance(vk_instance, nullptr);
SDL_DestroyWindow(window);
SDL_Quit();
return 0;
}