-
Notifications
You must be signed in to change notification settings - Fork 10
/
sample_models.py
415 lines (367 loc) · 15.9 KB
/
sample_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from keras import backend as K
from keras.models import Model, Sequential
from keras.layers import (BatchNormalization, Conv1D, Dense, Input,
TimeDistributed, Activation, Bidirectional, SimpleRNN, GRU, LSTM, pooling)
from keras.layers.core import Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.pooling import MaxPooling1D
def simple_rnn_model(input_dim, output_dim=29):
""" Build a recurrent network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# Add recurrent layer
simp_rnn = GRU(output_dim, return_sequences=True,
implementation=2, name='rnn')(input_data)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(simp_rnn)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: x
print(model.summary())
return model
def rnn_model(input_dim, units, activation, output_dim=29):
""" Build a recurrent network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# Add recurrent layer
simp_rnn = GRU(units, activation=activation,
return_sequences=True, implementation=2, name='rnn')(input_data)
# TODO: Add batch normalization
bn_rnn = BatchNormalization()(simp_rnn)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bn_rnn)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: x
print(model.summary())
return model
def cnn_rnn_model(input_dim, filters, kernel_size, conv_stride,
conv_border_mode, units, output_dim=29):
""" Build a recurrent + convolutional network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# Add convolutional layer
conv_1d = Conv1D(filters, kernel_size,
strides=conv_stride,
padding=conv_border_mode,
activation='relu',
name='conv1d')(input_data)
# Add batch normalization
bn_cnn = BatchNormalization(name='bn_conv_1d')(conv_1d)
# Add a recurrent layer
simp_rnn = SimpleRNN(units, activation='relu',
return_sequences=True, implementation=2, name='rnn')(bn_cnn)
# TODO: Add batch normalization
bn_rnn = BatchNormalization()(simp_rnn)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bn_rnn)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: cnn_output_length(
x, kernel_size, conv_border_mode, conv_stride)
print(model.summary())
return model
def cnn_output_length(input_length, filter_size, border_mode, stride,
dilation=1):
""" Compute the length of the output sequence after 1D convolution along
time. Note that this function is in line with the function used in
Convolution1D class from Keras.
Params:
input_length (int): Length of the input sequence.
filter_size (int): Width of the convolution kernel.
border_mode (str): Only support `same` or `valid`.
stride (int): Stride size used in 1D convolution.
dilation (int)
"""
if input_length is None:
return None
assert border_mode in {'same', 'valid'}
dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1)
if border_mode == 'same':
output_length = input_length
elif border_mode == 'valid':
output_length = input_length - dilated_filter_size + 1
return (output_length + stride - 1) // stride
def deep_rnn_model(input_dim, units, recur_layers, output_dim=29):
""" Build a deep recurrent network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# TODO: Add recurrent layers, each with batch normalization
tmp_data = input_data
for idx in range(recur_layers):
layer_name = "rnn_{}".format(idx)
tmp_data = GRU(units, return_sequences=True,
implementation=2, name=layer_name)(tmp_data)
tmp_data = BatchNormalization()(tmp_data)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_distrebuted = TimeDistributed(Dense(output_dim))(tmp_data)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_distrebuted)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: x
print(model.summary())
return model
def bidirectional_rnn_model(input_dim, units, output_dim=29):
""" Build a bidirectional recurrent network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# TODO: Add bidirectional recurrent layer
# model = Sequential()
# model.add(Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-1'), input_shape=(None, input_dim)))
# model.add(Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-2')))
# model.add(TimeDistributed(Dense(output_dim)))
# model.add(Activation('softmax'))
# model.output_length = lambda x: x
# tmp_data = GRU(units, return_sequences=True, implementation=2, name='gru-1')(input_data)
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-1'))(input_data)
# bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-1'))(bidir_rnn)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bidir_rnn)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: x
print(model.summary())
return model
# extend cnn_rnn_model model
def candidate_1_model(input_dim, filters, kernel_size, conv_stride,
conv_border_mode, units, output_dim=29):
""" Build a deep network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# TODO: Specify the layers in your network
# Add convolutional layer
conv_1d = Conv1D(filters, kernel_size,
strides=conv_stride,
padding=conv_border_mode,
activation='relu',
name='conv1d')(input_data)
# max pooling if i use
# pooling_1 = pooling.MaxPooling1D()(conv_1d)
# Add batch normalization
bn_cnn = BatchNormalization(name='bn_conv_1d')(conv_1d)
# bidirectional rnn 1
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-11'))(input_data)
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-12'))(bidir_rnn)
# bidirectional rnn 22
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-21'))(bidir_rnn)
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-22'))(bidir_rnn)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bidir_rnn)
# TODO: Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
# TODO: Specify model.output_length
model.output_length = lambda x: cnn_output_length(x, kernel_size, conv_border_mode, conv_stride)
print(model.summary())
return model
def dilated_conv(input_dim, filters, kernel_size, conv_stride,
conv_border_mode, units, output_dim=29):
""" Build a recurrent + convolutional network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# Add convolutional layer: 1
conv_1d_1 = Conv1D(filters, kernel_size,
strides=1,
padding=conv_border_mode,
activation='relu',
dilation_rate=2,
name='conv1d_1')(input_data)
# Add batch normalization
bn_cnn_1 = BatchNormalization(name='bn_conv_1d_1')(conv_1d_1)
# Add convolutional layer: 2
conv_1d_2 = Conv1D(filters, kernel_size,
strides=1,
padding=conv_border_mode,
activation='relu',
dilation_rate=4,
name='conv1d_2')(bn_cnn_1)
# Add batch normalization
bn_cnn_2 = BatchNormalization(name='bn_conv_1d_2')(conv_1d_2)
# dropout here
dropout_1 = Dropout(0.8)(bn_cnn_2)
# Add convolutional layer: 3
conv_1d_3 = Conv1D(filters, kernel_size,
strides=1,
padding=conv_border_mode,
activation='relu',
dilation_rate=8,
name='conv1d_3')(dropout_1)
# Add batch normalization
bn_cnn_3 = BatchNormalization(name='bn_conv_1d_3')(conv_1d_3)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bn_cnn_3)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: x
print(model.summary())
return model
def cnn_rnn_model_2(input_dim, filters, kernel_size, conv_stride,
conv_border_mode, units, output_dim=29):
""" Build a recurrent + convolutional network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# Add convolutional layer
conv_1d = Conv1D(filters, kernel_size,
strides=conv_stride,
padding=conv_border_mode,
activation='relu',
name='conv1d')(input_data)
# Add batch normalization
bn_cnn = BatchNormalization(name='bn_conv_1d')(conv_1d)
# bidirectional rnn 1
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-11', dropout=0.1, recurrent_dropout=0.1))(bn_cnn)
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-12', dropout=0.1, recurrent_dropout=0.1))(bidir_rnn)
# # Add a recurrent layer
# simp_rnn = SimpleRNN(units, activation='relu',
# return_sequences=True, implementation=2, name='rnn')(bn_cnn)
# TODO: Add batch normalization
bn_rnn = BatchNormalization()(bidir_rnn)
# TODO: Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bn_rnn)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: cnn_output_length(
x, kernel_size, conv_border_mode, conv_stride)
print(model.summary())
return model
#
#def dilated_conv_2(input_dim, filters, kernel_size, conv_stride,
# conv_border_mode, units, output_dim=29):
# """ Build a recurrent + convolutional network for speech
# """
# # Main acoustic input
# input_data = Input(name='the_input', shape=(None, input_dim))
#
#
# # Add convolutional layer: 1
# conv_1d_1 = Conv1D(filters, kernel_size,
# strides=1,
# padding=conv_border_mode,
# activation='relu',
# dilation_rate=2,
# name='conv1d_1')(input_data)
# # max pooling
# conv_1d_1 = MaxPooling1D()(conv_1d_1)
#
# # Add batch normalization
# bn_cnn_1 = BatchNormalization(name='bn_conv_1d_1')(conv_1d_1)
#
# # Add convolutional layer: 2
# conv_1d_2 = Conv1D(filters, kernel_size,
# strides=1,
# padding=conv_border_mode,
# activation='relu',
# dilation_rate=4,
# name='conv1d_2')(bn_cnn_1)
# # max pooling
# conv_1d_2 = MaxPooling1D()(conv_1d_2)
#
# # Add batch normalization
# bn_cnn_2 = BatchNormalization(name='bn_conv_1d_2')(conv_1d_2)
#
#
#
# # dropout here
# dropout_1 = Dropout(0.8)(bn_cnn_2)
#
# # Add convolutional layer: 3
# conv_1d_3 = Conv1D(filters, kernel_size,
# strides=1,
# padding=conv_border_mode,
# activation='relu',
# dilation_rate=8,
# name='conv1d_3')(dropout_1)
#
# # max pooling
# # conv_1d_3 = MaxPooling1D()(conv_1d_3)
#
# # Add batch normalization
# bn_cnn_3 = BatchNormalization(name='bn_conv_1d_3')(conv_1d_3)
#
# # TODO: Add a TimeDistributed(Dense(output_dim)) layer
# time_dense = TimeDistributed(Dense(output_dim))(bn_cnn_3)
#
# # Add softmax activation layer
# y_pred = Activation('softmax', name='softmax')(time_dense)
# # Specify the model
# model = Model(inputs=input_data, outputs=y_pred)
#
# # model.output_length = lambda x: x
# model.output_length = lambda x: cnn_output_length(cnn_output_length(x, 2, 'valid', 2), 2, 'valid', 2)
#
# print(model.summary())
# return model
# extend cnn_rnn_model model
# def final_model():
def final_model(input_dim, filters, kernel_size, conv_stride,
conv_border_mode, units, output_dim=29):
""" Build a recurrent + convolutional network for speech
"""
# Main acoustic input
input_data = Input(name='the_input', shape=(None, input_dim))
# Add convolutional layer
conv_1d = Conv1D(filters, kernel_size,
strides=conv_stride,
padding=conv_border_mode,
activation='relu',
name='conv1d')(input_data)
# Add batch normalization
bn_cnn = BatchNormalization(name='bn_conv_1d')(conv_1d)
# bidirectional rnn x 2
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-11', dropout=0.1, recurrent_dropout=0.1))(bn_cnn)
bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-12', dropout=0.1, recurrent_dropout=0.1))(bidir_rnn)
# Add batch normalization
bn_rnn = BatchNormalization()(bidir_rnn)
# Add a TimeDistributed(Dense(output_dim)) layer
time_dense = TimeDistributed(Dense(output_dim))(bn_rnn)
# Add softmax activation layer
y_pred = Activation('softmax', name='softmax')(time_dense)
# Specify the model
model = Model(inputs=input_data, outputs=y_pred)
model.output_length = lambda x: cnn_output_length(
x, kernel_size, conv_border_mode, conv_stride)
print(model.summary())
return model
# def final_model_not_good(input_dim, units, output_dim=29):
# """ Build a bidirectional recurrent network for speech
# """
# # Main acoustic input
# input_data = Input(name='the_input', shape=(None, input_dim))
#
# # 2 bidirectional layer
# bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-11'))(input_data)
# bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-12'))(bidir_rnn)
# bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-21'))(input_data)
# bidir_rnn = Bidirectional(GRU(units, return_sequences=True, implementation=2, name='gru-22'))(bidir_rnn)
#
# # time distrebuted dense layer
# time_dense = TimeDistributed(Dense(output_dim))(bidir_rnn)
# # Add softmax activation layer
# y_pred = Activation('softmax', name='softmax')(time_dense)
# # Specify the model
# model = Model(inputs=input_data, outputs=y_pred)
# model.output_length = lambda x: x
#
#
# print(model.summary())
# return model