forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.hpp
840 lines (705 loc) · 29.4 KB
/
utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
#pragma once
#include "common.h"
#include "log.h"
#include "llama.h"
#include "common/base64.hpp"
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
#include "httplib.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include <memory>
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
using json = nlohmann::ordered_json;
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
// Fallback null to default value
if (body.contains(key) && !body.at(key).is_null()) {
try {
return body.at(key);
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
return default_value;
}
} else {
return default_value;
}
}
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
//
// tokenizer and input processing utils
//
static bool json_is_array_of_numbers(const json & data) {
if (data.is_array()) {
for (const auto & e : data) {
if (!e.is_number_integer()) {
return false;
}
}
return true;
}
return false;
}
// is array having BOTH numbers & strings?
static bool json_is_array_of_mixed_numbers_strings(const json & data) {
bool seen_string = false;
bool seen_number = false;
if (data.is_array()) {
for (const auto & e : data) {
seen_string |= e.is_string();
seen_number |= e.is_number_integer();
if (seen_number && seen_string) {
return true;
}
}
}
return false;
}
// get value by path(key1 / key2)
static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
json result = json::object();
for (const std::string & path : paths) {
json current = js;
const auto keys = string_split<std::string>(path, /*separator*/ '/');
bool valid_path = true;
for (const std::string & k : keys) {
if (valid_path && current.is_object() && current.contains(k)) {
current = current[k];
} else {
valid_path = false;
}
}
if (valid_path) {
result[path] = current;
}
}
return result;
}
/**
* this handles 2 cases:
* - only string, example: "string"
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
*/
static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
llama_tokens prompt_tokens;
if (json_prompt.is_array()) {
bool first = true;
for (const auto & p : json_prompt) {
if (p.is_string()) {
auto s = p.template get<std::string>();
llama_tokens p;
if (first) {
p = common_tokenize(ctx, s, add_special, parse_special);
first = false;
} else {
p = common_tokenize(ctx, s, false, parse_special);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
} else {
if (first) {
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
} else {
auto s = json_prompt.template get<std::string>();
prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
}
return prompt_tokens;
}
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
*/
static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
std::vector<llama_tokens> result;
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
// string or mixed
result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special));
} else if (json_is_array_of_numbers(json_prompt)) {
// array of tokens
result.push_back(json_prompt.get<llama_tokens>());
} else if (json_prompt.is_array()) {
// array of prompts
result.reserve(json_prompt.size());
for (const auto & p : json_prompt) {
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
result.push_back(tokenize_mixed(ctx, p, add_special, parse_special));
} else if (json_is_array_of_numbers(p)) {
// array of tokens
result.push_back(p.get<llama_tokens>());
} else {
throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
}
}
} else {
throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
}
if (result.empty()) {
throw std::runtime_error("\"prompt\" must not be empty");
}
return result;
}
// return the last index of character that can form a valid string
// if the last character is potentially cut in half, return the index before the cut
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
static size_t validate_utf8(const std::string& text) {
size_t len = text.size();
if (len == 0) return 0;
// Check the last few bytes to see if a multi-byte character is cut off
for (size_t i = 1; i <= 4 && i <= len; ++i) {
unsigned char c = text[len - i];
// Check for start of a multi-byte sequence from the end
if ((c & 0xE0) == 0xC0) {
// 2-byte character start: 110xxxxx
// Needs at least 2 bytes
if (i < 2) return len - i;
} else if ((c & 0xF0) == 0xE0) {
// 3-byte character start: 1110xxxx
// Needs at least 3 bytes
if (i < 3) return len - i;
} else if ((c & 0xF8) == 0xF0) {
// 4-byte character start: 11110xxx
// Needs at least 4 bytes
if (i < 4) return len - i;
}
}
// If no cut-off multi-byte character is found, return full length
return len;
}
//
// template utils
//
// format rerank task: [BOS]query[EOS][SEP]doc[EOS]
static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) {
llama_tokens result;
result.reserve(doc.size() + query.size() + 4);
result.push_back(llama_token_bos(model));
result.insert(result.end(), query.begin(), query.end());
result.push_back(llama_token_eos(model));
result.push_back(llama_token_sep(model));
result.insert(result.end(), doc.begin(), doc.end());
result.push_back(llama_token_eos(model));
return result;
}
// format infill task
static llama_tokens format_infill(
const llama_context * ctx,
const json & input_prefix,
const json & input_suffix,
const json & input_extra,
const int n_batch,
const int n_predict,
const int n_ctx,
const bool spm_infill,
const llama_tokens & tokens_prompt
) {
// TODO: optimize this block by reducing memory allocations and movement
// use FIM repo-level pattern:
// ref: https://arxiv.org/pdf/2409.12186
//
// [FIM_REP]myproject
// [FIM_SEP]filename0
// extra chunk 0
// [FIM_SEP]filename1
// extra chunk 1
// ...
// [FIM_SEP]filename
// [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
//
llama_tokens extra_tokens;
extra_tokens.reserve(n_ctx);
auto model = llama_get_model(ctx);
auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false);
auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false);
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
// TODO: make project name an input
static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false);
extra_tokens.push_back(llama_token_fim_rep(model));
extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
}
for (const auto & chunk : input_extra) {
// { "text": string, "filename": string }
const std::string text = json_value(chunk, "text", std::string());
const std::string filename = json_value(chunk, "filename", std::string("tmp"));
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false);
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
} else {
// chunk separator in binary form to avoid confusing the AI
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false);
extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
}
const auto chunk_tokens = common_tokenize(ctx, text, false, false);
extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
}
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
// TODO: current filename
static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false);
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
}
// for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
// fill the rest of the context with extra chunks
const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
tokens_suffix.resize(n_suffix_take);
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
if (llama_add_bos_token(model)) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
}
SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
// put the extra context before the FIM prefix
embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
embd_inp.push_back(llama_token_fim_mid(model));
return embd_inp;
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
std::vector<common_chat_msg> chat;
for (size_t i = 0; i < messages.size(); ++i) {
const auto & curr_msg = messages[i];
std::string role = json_value(curr_msg, "role", std::string(""));
std::string content;
if (curr_msg.contains("content")) {
if (curr_msg["content"].is_string()) {
content = curr_msg["content"].get<std::string>();
} else if (curr_msg["content"].is_array()) {
for (const auto & part : curr_msg["content"]) {
if (part.contains("text")) {
content += "\n" + part["text"].get<std::string>();
}
}
} else {
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
}
} else {
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
}
chat.push_back({role, content});
}
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
return formatted_chat;
}
//
// base64 utils (TODO: move to common in the future)
//
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c) {
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
int i = 0;
int j = 0;
int in_ = 0;
int in_len = encoded_string.size();
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4) {
for (i = 0; i < 4; i++) {
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++) {
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i) {
for (j = i; j < 4; j++) {
char_array_4[j] = 0;
}
for (j = 0; j < 4; j++) {
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; j < i - 1; j++) {
ret.push_back(char_array_3[j]);
}
}
return ret;
}
//
// random string / id
//
static std::string random_string() {
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid() {
return "chatcmpl-" + random_string();
}
//
// other common utils
//
static bool ends_with(const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
if (!text.empty() && !stop.empty()) {
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
if (stop[char_index] == text_last_char) {
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial)) {
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
std::string ret;
for (; begin != end; ++begin) {
ret += common_token_to_piece(ctx, *begin);
}
return ret;
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
const std::string str =
std::string(event) + ": " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
LOG_DBG("data stream, to_send: %s", str.c_str());
return sink.write(str.c_str(), str.size());
}
//
// OAI utils
//
static json oaicompat_completion_params_parse(const json & body) {
json llama_params;
if (!body.contains("prompt")) {
throw std::runtime_error("\"prompt\" is required");
}
// Handle "stop" field
if (body.contains("stop") && body.at("stop").is_string()) {
llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::runtime_error("Only one completion choice is allowed");
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
for (const auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);
}
}
// Copy remaining properties to llama_params
for (const auto & item : body.items()) {
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
llama_params[item.key()] = item.value();
}
}
return llama_params;
}
static json oaicompat_chat_completion_params_parse(
const struct llama_model * model,
const json & body, /* openai api json semantics */
const std::string & chat_template) {
json llama_params;
// Apply chat template to the list of messages
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
// Handle "stop" field
if (body.contains("stop") && body.at("stop").is_string()) {
llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Handle "response_format" field
if (body.contains("response_format")) {
json response_format = json_value(body, "response_format", json::object());
std::string response_type = json_value(response_format, "type", std::string());
if (response_type == "json_object") {
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
} else if (response_type == "json_schema") {
json json_schema = json_value(response_format, "json_schema", json::object());
llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
} else if (!response_type.empty() && response_type != "text") {
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
}
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::runtime_error("Only one completion choice is allowed");
}
// Handle "logprobs" field
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
if (json_value(body, "logprobs", false)) {
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
} else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
for (const auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);
}
}
// Copy remaining properties to llama_params
// This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
for (const auto & item : body.items()) {
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
llama_params[item.key()] = item.value();
}
}
return llama_params;
}
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
json data = json::array();
int32_t n_tokens = 0;
int i = 0;
for (const auto & elem : embeddings) {
json embedding_obj;
if (use_base64) {
const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
const char* data_ptr = reinterpret_cast<const char*>(vec.data());
size_t data_size = vec.size() * sizeof(float);
embedding_obj = {
{"embedding", base64::encode(data_ptr, data_size)},
{"index", i++},
{"object", "embedding"},
{"encoding_format", "base64"}
};
} else {
embedding_obj = {
{"embedding", json_value(elem, "embedding", json::array())},
{"index", i++},
{"object", "embedding"}
};
}
data.push_back(embedding_obj);
n_tokens += json_value(elem, "tokens_evaluated", 0);
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json {
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"data", data}
};
return res;
}
static json format_response_rerank(const json & request, const json & ranks) {
json data = json::array();
int32_t n_tokens = 0;
int i = 0;
for (const auto & rank : ranks) {
data.push_back(json{
{"index", i++},
{"relevance_score", json_value(rank, "score", 0.0)},
});
n_tokens += json_value(rank, "tokens_evaluated", 0);
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json {
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", data}
};
return res;
}
static bool is_valid_utf8(const std::string & str) {
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
const unsigned char* end = bytes + str.length();
while (bytes < end) {
if (*bytes <= 0x7F) {
// 1-byte sequence (0xxxxxxx)
bytes++;
} else if ((*bytes & 0xE0) == 0xC0) {
// 2-byte sequence (110xxxxx 10xxxxxx)
if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
return false;
bytes += 2;
} else if ((*bytes & 0xF0) == 0xE0) {
// 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
return false;
bytes += 3;
} else if ((*bytes & 0xF8) == 0xF0) {
// 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
(bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
return false;
bytes += 4;
} else {
// Invalid UTF-8 lead byte
return false;
}
}
return true;
}
static json format_tokenizer_response(const json & tokens) {
return json {
{"tokens", tokens}
};
}
static json format_detokenized_response(const std::string & content) {
return json {
{"content", content}
};
}
static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
json data = json::array();
for (const auto & lb : logit_bias) {
data.push_back(json{
{"bias", lb.bias},
{"token", lb.token},
});
}
return data;
}
static std::string safe_json_to_str(json data) {
return data.dump(-1, ' ', false, json::error_handler_t::replace);
}
static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
std::vector<llama_token_data> cur;
const auto * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
// sort tokens by logits
std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
// apply softmax
float max_l = cur[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < cur.size(); ++i) {
float p = expf(cur[i].logit - max_l);
cur[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < cur.size(); ++i) {
cur[i].p /= cum_sum;
}
return cur;
}
static bool are_lora_equal(
const std::vector<common_lora_adapter_info> & l1,
const std::vector<common_lora_adapter_info> & l2) {
if (l1.size() != l2.size()) {
return false;
}
for (size_t i = 0; i < l1.size(); ++i) {
// we don't check lora.path to reduce the time complexity
if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
return false;
}
}
return true;
}
// parse lora config from JSON request, returned a copy of lora_base with updated scale
static std::vector<common_lora_adapter_info> parse_lora_request(
const std::vector<common_lora_adapter_info> & lora_base,
const json & data) {
std::vector<common_lora_adapter_info> lora(lora_base);
int max_idx = lora.size();
// clear existing value
for (auto & entry : lora) {
entry.scale = 0.0f;
}
// set value
for (const auto & entry : data) {
int id = json_value(entry, "id", -1);
float scale = json_value(entry, "scale", 0.0f);
if (0 <= id && id < max_idx) {
lora[id].scale = scale;
} else {
throw std::runtime_error("invalid adapter id");
}
}
return lora;
}