forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binary_tree_traversals.py
194 lines (150 loc) · 4.87 KB
/
binary_tree_traversals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# https://en.wikipedia.org/wiki/Tree_traversal
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class Node:
data: int
left: Node | None = None
right: Node | None = None
def make_tree() -> Node | None:
r"""
The below tree
1
/ \
2 3
/ \
4 5
"""
tree = Node(1)
tree.left = Node(2)
tree.right = Node(3)
tree.left.left = Node(4)
tree.left.right = Node(5)
return tree
def preorder(root: Node | None) -> list[int]:
"""
Pre-order traversal visits root node, left subtree, right subtree.
>>> preorder(make_tree())
[1, 2, 4, 5, 3]
"""
return [root.data, *preorder(root.left), *preorder(root.right)] if root else []
def postorder(root: Node | None) -> list[int]:
"""
Post-order traversal visits left subtree, right subtree, root node.
>>> postorder(make_tree())
[4, 5, 2, 3, 1]
"""
return postorder(root.left) + postorder(root.right) + [root.data] if root else []
def inorder(root: Node | None) -> list[int]:
"""
In-order traversal visits left subtree, root node, right subtree.
>>> inorder(make_tree())
[4, 2, 5, 1, 3]
"""
return [*inorder(root.left), root.data, *inorder(root.right)] if root else []
def height(root: Node | None) -> int:
"""
Recursive function for calculating the height of the binary tree.
>>> height(None)
0
>>> height(make_tree())
3
"""
return (max(height(root.left), height(root.right)) + 1) if root else 0
def level_order(root: Node | None) -> Sequence[Node | None]:
"""
Returns a list of nodes value from a whole binary tree in Level Order Traverse.
Level Order traverse: Visit nodes of the tree level-by-level.
"""
output: list[Any] = []
if root is None:
return output
process_queue = deque([root])
while process_queue:
node = process_queue.popleft()
output.append(node.data)
if node.left:
process_queue.append(node.left)
if node.right:
process_queue.append(node.right)
return output
def get_nodes_from_left_to_right(
root: Node | None, level: int
) -> Sequence[Node | None]:
"""
Returns a list of nodes value from a particular level:
Left to right direction of the binary tree.
"""
output: list[Any] = []
def populate_output(root: Node | None, level: int) -> None:
if not root:
return
if level == 1:
output.append(root.data)
elif level > 1:
populate_output(root.left, level - 1)
populate_output(root.right, level - 1)
populate_output(root, level)
return output
def get_nodes_from_right_to_left(
root: Node | None, level: int
) -> Sequence[Node | None]:
"""
Returns a list of nodes value from a particular level:
Right to left direction of the binary tree.
"""
output: list[Any] = []
def populate_output(root: Node | None, level: int) -> None:
if root is None:
return
if level == 1:
output.append(root.data)
elif level > 1:
populate_output(root.right, level - 1)
populate_output(root.left, level - 1)
populate_output(root, level)
return output
def zigzag(root: Node | None) -> Sequence[Node | None] | list[Any]:
"""
ZigZag traverse:
Returns a list of nodes value from left to right and right to left, alternatively.
"""
if root is None:
return []
output: list[Sequence[Node | None]] = []
flag = 0
height_tree = height(root)
for h in range(1, height_tree + 1):
if not flag:
output.append(get_nodes_from_left_to_right(root, h))
flag = 1
else:
output.append(get_nodes_from_right_to_left(root, h))
flag = 0
return output
def main() -> None: # Main function for testing.
"""
Create binary tree.
"""
root = make_tree()
"""
All Traversals of the binary are as follows:
"""
print(f"In-order Traversal: {inorder(root)}")
print(f"Pre-order Traversal: {preorder(root)}")
print(f"Post-order Traversal: {postorder(root)}", "\n")
print(f"Height of Tree: {height(root)}", "\n")
print("Complete Level Order Traversal: ")
print(level_order(root), "\n")
print("Level-wise order Traversal: ")
for level in range(1, height(root) + 1):
print(f"Level {level}:", get_nodes_from_left_to_right(root, level=level))
print("\nZigZag order Traversal: ")
print(zigzag(root))
if __name__ == "__main__":
import doctest
doctest.testmod()
main()