forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lib.py
439 lines (385 loc) · 13.7 KB
/
lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""
Created on Mon Feb 26 14:29:11 2018
@author: Christian Bender
@license: MIT-license
This module contains some useful classes and functions for dealing
with linear algebra in python.
Overview:
- class Vector
- function zero_vector(dimension)
- function unit_basis_vector(dimension, pos)
- function axpy(scalar, vector1, vector2)
- function random_vector(N, a, b)
- class Matrix
- function square_zero_matrix(N)
- function random_matrix(W, H, a, b)
"""
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class Vector:
"""
This class represents a vector of arbitrary size.
You need to give the vector components.
Overview of the methods:
__init__(components: Collection[float] | None): init the vector
__len__(): gets the size of the vector (number of components)
__str__(): returns a string representation
__add__(other: Vector): vector addition
__sub__(other: Vector): vector subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): dot product
copy(): copies this vector and returns it
component(i): gets the i-th component (0-indexed)
change_component(pos: int, value: float): changes specified component
euclidean_length(): returns the euclidean length of the vector
angle(other: Vector, deg: bool): returns the angle between two vectors
TODO: compare-operator
"""
def __init__(self, components: Collection[float] | None = None) -> None:
"""
input: components or nothing
simple constructor for init the vector
"""
if components is None:
components = []
self.__components = list(components)
def __len__(self) -> int:
"""
returns the size of the vector
"""
return len(self.__components)
def __str__(self) -> str:
"""
returns a string representation of the vector
"""
return "(" + ",".join(map(str, self.__components)) + ")"
def __add__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the sum.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] + other.component(i) for i in range(size)]
return Vector(result)
else:
raise Exception("must have the same size")
def __sub__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the difference.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] - other.component(i) for i in range(size)]
return Vector(result)
else: # error case
raise Exception("must have the same size")
@overload
def __mul__(self, other: float) -> Vector:
...
@overload
def __mul__(self, other: Vector) -> float:
...
def __mul__(self, other: float | Vector) -> float | Vector:
"""
mul implements the scalar multiplication
and the dot-product
"""
if isinstance(other, (float, int)):
ans = [c * other for c in self.__components]
return Vector(ans)
elif isinstance(other, Vector) and len(self) == len(other):
size = len(self)
prods = [self.__components[i] * other.component(i) for i in range(size)]
return sum(prods)
else: # error case
raise Exception("invalid operand!")
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def component(self, i: int) -> float:
"""
input: index (0-indexed)
output: the i-th component of the vector.
"""
if isinstance(i, int) and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
def change_component(self, pos: int, value: float) -> None:
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
# precondition
assert -len(self.__components) <= pos < len(self.__components)
self.__components[pos] = value
def euclidean_length(self) -> float:
"""
returns the euclidean length of the vector
>>> Vector([2, 3, 4]).euclidean_length()
5.385164807134504
>>> Vector([1]).euclidean_length()
1.0
>>> Vector([0, -1, -2, -3, 4, 5, 6]).euclidean_length()
9.539392014169456
>>> Vector([]).euclidean_length()
Traceback (most recent call last):
...
Exception: Vector is empty
"""
if len(self.__components) == 0:
raise Exception("Vector is empty")
squares = [c**2 for c in self.__components]
return math.sqrt(sum(squares))
def angle(self, other: Vector, deg: bool = False) -> float:
"""
find angle between two Vector (self, Vector)
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]))
1.4906464636572374
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]), deg = True)
85.40775111366095
>>> Vector([3, 4, -1]).angle(Vector([2, -1]))
Traceback (most recent call last):
...
Exception: invalid operand!
"""
num = self * other
den = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den))
else:
return math.acos(num / den)
def zero_vector(dimension: int) -> Vector:
"""
returns a zero-vector of size 'dimension'
"""
# precondition
assert isinstance(dimension, int)
return Vector([0] * dimension)
def unit_basis_vector(dimension: int, pos: int) -> Vector:
"""
returns a unit basis vector with a One
at index 'pos' (indexing at 0)
"""
# precondition
assert isinstance(dimension, int) and (isinstance(pos, int))
ans = [0] * dimension
ans[pos] = 1
return Vector(ans)
def axpy(scalar: float, x: Vector, y: Vector) -> Vector:
"""
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation
"""
# precondition
assert (
isinstance(x, Vector)
and isinstance(y, Vector)
and (isinstance(scalar, (int, float)))
)
return x * scalar + y
def random_vector(n: int, a: int, b: int) -> Vector:
"""
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'.
"""
random.seed(None)
ans = [random.randint(a, b) for _ in range(n)]
return Vector(ans)
class Matrix:
"""
class: Matrix
This class represents an arbitrary matrix.
Overview of the methods:
__init__():
__str__(): returns a string representation
__add__(other: Matrix): matrix addition
__sub__(other: Matrix): matrix subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): vector multiplication
height() : returns height
width() : returns width
component(x: int, y: int): returns specified component
change_component(x: int, y: int, value: float): changes specified component
minor(x: int, y: int): returns minor along (x, y)
cofactor(x: int, y: int): returns cofactor along (x, y)
determinant() : returns determinant
"""
def __init__(self, matrix: list[list[float]], w: int, h: int) -> None:
"""
simple constructor for initializing the matrix with components.
"""
self.__matrix = matrix
self.__width = w
self.__height = h
def __str__(self) -> str:
"""
returns a string representation of this matrix.
"""
ans = ""
for i in range(self.__height):
ans += "|"
for j in range(self.__width):
if j < self.__width - 1:
ans += str(self.__matrix[i][j]) + ","
else:
ans += str(self.__matrix[i][j]) + "|\n"
return ans
def __add__(self, other: Matrix) -> Matrix:
"""
implements matrix addition.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] + other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrix must have the same dimension!")
def __sub__(self, other: Matrix) -> Matrix:
"""
implements matrix subtraction.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] - other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrices must have the same dimension!")
@overload
def __mul__(self, other: float) -> Matrix:
...
@overload
def __mul__(self, other: Vector) -> Vector:
...
def __mul__(self, other: float | Vector) -> Vector | Matrix:
"""
implements the matrix-vector multiplication.
implements the matrix-scalar multiplication
"""
if isinstance(other, Vector): # matrix-vector
if len(other) == self.__width:
ans = zero_vector(self.__height)
for i in range(self.__height):
prods = [
self.__matrix[i][j] * other.component(j)
for j in range(self.__width)
]
ans.change_component(i, sum(prods))
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!"
)
elif isinstance(other, (int, float)): # matrix-scalar
matrix = [
[self.__matrix[i][j] * other for j in range(self.__width)]
for i in range(self.__height)
]
return Matrix(matrix, self.__width, self.__height)
return None
def height(self) -> int:
"""
getter for the height
"""
return self.__height
def width(self) -> int:
"""
getter for the width
"""
return self.__width
def component(self, x: int, y: int) -> float:
"""
returns the specified (x,y) component
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds")
def change_component(self, x: int, y: int, value: float) -> None:
"""
changes the x-y component of this matrix
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
self.__matrix[x][y] = value
else:
raise Exception("change_component: indices out of bounds")
def minor(self, x: int, y: int) -> float:
"""
returns the minor along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
minor = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(minor)):
minor[i] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(minor, self.__width - 1, self.__height - 1).determinant()
def cofactor(self, x: int, y: int) -> float:
"""
returns the cofactor (signed minor) along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(x, y)
else:
raise Exception("Indices out of bounds")
def determinant(self) -> float:
"""
returns the determinant of an nxn matrix using Laplace expansion
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if self.__height < 1:
raise Exception("Matrix has no element")
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
cofactor_prods = [
self.__matrix[0][y] * self.cofactor(0, y) for y in range(self.__width)
]
return sum(cofactor_prods)
def square_zero_matrix(n: int) -> Matrix:
"""
returns a square zero-matrix of dimension NxN
"""
ans: list[list[float]] = [[0] * n for _ in range(n)]
return Matrix(ans, n, n)
def random_matrix(width: int, height: int, a: int, b: int) -> Matrix:
"""
returns a random matrix WxH with integer components
between 'a' and 'b'
"""
random.seed(None)
matrix: list[list[float]] = [
[random.randint(a, b) for _ in range(width)] for _ in range(height)
]
return Matrix(matrix, width, height)