forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
perceptron.py
238 lines (218 loc) · 6.74 KB
/
perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
Perceptron
w = w + N * (d(k) - y) * x(k)
Using perceptron network for oil analysis, with Measuring of 3 parameters
that represent chemical characteristics we can classify the oil, in p1 or p2
p1 = -1
p2 = 1
"""
import random
class Perceptron:
def __init__(
self,
sample: list[list[float]],
target: list[int],
learning_rate: float = 0.01,
epoch_number: int = 1000,
bias: float = -1,
) -> None:
"""
Initializes a Perceptron network for oil analysis
:param sample: sample dataset of 3 parameters with shape [30,3]
:param target: variable for classification with two possible states -1 or 1
:param learning_rate: learning rate used in optimizing.
:param epoch_number: number of epochs to train network on.
:param bias: bias value for the network.
>>> p = Perceptron([], (0, 1, 2))
Traceback (most recent call last):
...
ValueError: Sample data can not be empty
>>> p = Perceptron(([0], 1, 2), [])
Traceback (most recent call last):
...
ValueError: Target data can not be empty
>>> p = Perceptron(([0], 1, 2), (0, 1))
Traceback (most recent call last):
...
ValueError: Sample data and Target data do not have matching lengths
"""
self.sample = sample
if len(self.sample) == 0:
raise ValueError("Sample data can not be empty")
self.target = target
if len(self.target) == 0:
raise ValueError("Target data can not be empty")
if len(self.sample) != len(self.target):
raise ValueError("Sample data and Target data do not have matching lengths")
self.learning_rate = learning_rate
self.epoch_number = epoch_number
self.bias = bias
self.number_sample = len(sample)
self.col_sample = len(sample[0]) # number of columns in dataset
self.weight: list = []
def training(self) -> None:
"""
Trains perceptron for epochs <= given number of epochs
:return: None
>>> data = [[2.0149, 0.6192, 10.9263]]
>>> targets = [-1]
>>> perceptron = Perceptron(data,targets)
>>> perceptron.training() # doctest: +ELLIPSIS
('\\nEpoch:\\n', ...)
...
"""
for sample in self.sample:
sample.insert(0, self.bias)
for _ in range(self.col_sample):
self.weight.append(random.random())
self.weight.insert(0, self.bias)
epoch_count = 0
while True:
has_misclassified = False
for i in range(self.number_sample):
u = 0
for j in range(self.col_sample + 1):
u = u + self.weight[j] * self.sample[i][j]
y = self.sign(u)
if y != self.target[i]:
for j in range(self.col_sample + 1):
self.weight[j] = (
self.weight[j]
+ self.learning_rate
* (self.target[i] - y)
* self.sample[i][j]
)
has_misclassified = True
# print('Epoch: \n',epoch_count)
epoch_count = epoch_count + 1
# if you want control the epoch or just by error
if not has_misclassified:
print(("\nEpoch:\n", epoch_count))
print("------------------------\n")
# if epoch_count > self.epoch_number or not error:
break
def sort(self, sample: list[float]) -> None:
"""
:param sample: example row to classify as P1 or P2
:return: None
>>> data = [[2.0149, 0.6192, 10.9263]]
>>> targets = [-1]
>>> perceptron = Perceptron(data,targets)
>>> perceptron.training() # doctest: +ELLIPSIS
('\\nEpoch:\\n', ...)
...
>>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS
('Sample: ', ...)
classification: P...
"""
if len(self.sample) == 0:
raise ValueError("Sample data can not be empty")
sample.insert(0, self.bias)
u = 0
for i in range(self.col_sample + 1):
u = u + self.weight[i] * sample[i]
y = self.sign(u)
if y == -1:
print(("Sample: ", sample))
print("classification: P1")
else:
print(("Sample: ", sample))
print("classification: P2")
def sign(self, u: float) -> int:
"""
threshold function for classification
:param u: input number
:return: 1 if the input is greater than 0, otherwise -1
>>> data = [[0],[-0.5],[0.5]]
>>> targets = [1,-1,1]
>>> perceptron = Perceptron(data,targets)
>>> perceptron.sign(0)
1
>>> perceptron.sign(-0.5)
-1
>>> perceptron.sign(0.5)
1
"""
return 1 if u >= 0 else -1
samples = [
[-0.6508, 0.1097, 4.0009],
[-1.4492, 0.8896, 4.4005],
[2.0850, 0.6876, 12.0710],
[0.2626, 1.1476, 7.7985],
[0.6418, 1.0234, 7.0427],
[0.2569, 0.6730, 8.3265],
[1.1155, 0.6043, 7.4446],
[0.0914, 0.3399, 7.0677],
[0.0121, 0.5256, 4.6316],
[-0.0429, 0.4660, 5.4323],
[0.4340, 0.6870, 8.2287],
[0.2735, 1.0287, 7.1934],
[0.4839, 0.4851, 7.4850],
[0.4089, -0.1267, 5.5019],
[1.4391, 0.1614, 8.5843],
[-0.9115, -0.1973, 2.1962],
[0.3654, 1.0475, 7.4858],
[0.2144, 0.7515, 7.1699],
[0.2013, 1.0014, 6.5489],
[0.6483, 0.2183, 5.8991],
[-0.1147, 0.2242, 7.2435],
[-0.7970, 0.8795, 3.8762],
[-1.0625, 0.6366, 2.4707],
[0.5307, 0.1285, 5.6883],
[-1.2200, 0.7777, 1.7252],
[0.3957, 0.1076, 5.6623],
[-0.1013, 0.5989, 7.1812],
[2.4482, 0.9455, 11.2095],
[2.0149, 0.6192, 10.9263],
[0.2012, 0.2611, 5.4631],
]
target = [
-1,
-1,
-1,
1,
1,
-1,
1,
-1,
1,
1,
-1,
1,
-1,
-1,
-1,
-1,
1,
1,
1,
1,
-1,
1,
1,
1,
1,
-1,
-1,
1,
-1,
1,
]
if __name__ == "__main__":
import doctest
doctest.testmod()
network = Perceptron(
sample=samples, target=target, learning_rate=0.01, epoch_number=1000, bias=-1
)
network.training()
print("Finished training perceptron")
print("Enter values to predict or q to exit")
while True:
sample: list = []
for i in range(len(samples[0])):
user_input = input("value: ").strip()
if user_input == "q":
break
observation = float(user_input)
sample.insert(i, observation)
network.sort(sample)