-
Notifications
You must be signed in to change notification settings - Fork 0
/
mips_tb2.v
200 lines (159 loc) · 5.25 KB
/
mips_tb2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
module test_mips32;
reg clk1, clk2;
integer k;
pipe_MIPS32 mips (clk1, clk2);
initial
begin
clk1 = 0; clk2 = 0;
repeat (50) // Generating two-phase clock
begin
#5 clk1 = 1; #5 clk1 = 0;
#5 clk2 = 1; #5 clk2 = 0;
end
end
initial
begin
for (k=0; k<31; k=k+1)
mips.Reg[k] = k;
mips.Mem[0] = 32'h28010078; // ADDI R1,R0,120
mips.Mem[1] = 32'h0c631800; // OR R3,R3,R3 -- dummy instr.
mips.Mem[2] = 32'h20220000; // LW R2,0(R1)
mips.Mem[3] = 32'h0c631800; // OR R3,R3,R3 -- dummy instr.
mips.Mem[4] = 32'h2842002d; // ADDI R2,R2,45
mips.Mem[5] = 32'h0c631800; // OR R3,R3,R3 -- dummy instr.
mips.Mem[6] = 32'h24220001; // SW R2,1(R1)
mips.Mem[7] = 32'hfc000000; // HLT
mips.Mem[120] = 85;
mips.PC = 0;
mips.HALTED = 0;
mips.TAKEN_BRANCH = 0;
#500 $display ("Mem[120]: %4d \nMem[121]: %4d",
mips.Mem[120], mips.Mem[121]);
end
// initial
// begin
// $dumpfile ("mips.vcd");
// $dumpvars (0, test_mips32);
// #600 $finish;
// end
endmodule
module pipe_MIPS32 (clk1, clk2);
input clk1, clk2; // Two-phase clock
reg [31:0] PC, IF_ID_IR, IF_ID_NPC;
reg [31:0] ID_EX_IR, ID_EX_NPC, ID_EX_A, ID_EX_B, ID_EX_Imm;
reg [2:0] ID_EX_type, EX_MEM_type, MEM_WB_type;
reg [31:0] EX_MEM_IR, EX_MEM_ALUOut, EX_MEM_B;
reg EX_MEM_cond;
reg [31:0] MEM_WB_IR, MEM_WB_ALUOut, MEM_WB_LMD;
reg [31:0] Reg [0:31]; // Register bank (32 x 32)
reg [31:0] Mem [0:1023]; // 1024 x 32 memory
parameter ADD=6'b000000, SUB=6'b000001, AND=6'b000010, OR=6'b000011,
SLT=6'b000100, MUL=6'b000101, HLT=6'b111111, LW=6'b001000,
SW=6'b001001, ADDI=6'b001010, SUBI=6'b001011,SLTI=6'b001100,
BNEQZ=6'b001101, BEQZ=6'b001110;
parameter RR_ALU=3'b000, RM_ALU=3'b001, LOAD=3'b010, STORE=3'b011,
BRANCH=3'b100, HALT=3'b101;
reg HALTED;
// Set after HLT instruction is completed (in WB stage)
reg TAKEN_BRANCH;
// Required to disable instructions after branch
always @(posedge clk1) // IF Stage
if (HALTED == 0)
begin
if (((EX_MEM_IR[31:26] == BEQZ) && (EX_MEM_cond == 1)) ||
((EX_MEM_IR[31:26] == BNEQZ) && (EX_MEM_cond == 0)))
begin
IF_ID_IR <= #2 Mem[EX_MEM_ALUOut];
TAKEN_BRANCH <= #2 1'b1;
IF_ID_NPC <= #2 EX_MEM_ALUOut + 1;
PC <= #2 EX_MEM_ALUOut + 1;
end
else
begin
IF_ID_IR <= #2 Mem[PC];
IF_ID_NPC <= #2 PC + 1;
PC <= #2 PC + 1;
end
end
always @(posedge clk2) // ID Stage
if (HALTED == 0)
begin
if (IF_ID_IR[25:21] == 5'b00000) ID_EX_A <= 0;
else ID_EX_A <= #2 Reg[IF_ID_IR[25:21]]; // "rs"
if (IF_ID_IR[20:16] == 5'b00000) ID_EX_B <= 0;
else ID_EX_B <= #2 Reg[IF_ID_IR[20:16]]; // "rt"
ID_EX_NPC <= #2 IF_ID_NPC;
ID_EX_IR <= #2 IF_ID_IR;
ID_EX_Imm <= #2 {{16{IF_ID_IR[15]}}, {IF_ID_IR[15:0]}};
case (IF_ID_IR[31:26]) //opcode for instruction
ADD,SUB,AND,OR,SLT,MUL: ID_EX_type <= #2 RR_ALU;
ADDI,SUBI,SLTI: ID_EX_type <= #2 RM_ALU;
LW: ID_EX_type <= #2 LOAD;
SW: ID_EX_type <= #2 STORE;
BNEQZ,BEQZ: ID_EX_type <= #2 BRANCH;
HLT: ID_EX_type <= #2 HALT;
default: ID_EX_type <= #2 HALT;
// Invalid opcode
endcase
end
always @(posedge clk1) // EX Stage // all calculations take place for example reg to reg (or) reg to mem all
if (HALTED == 0)
begin
EX_MEM_type <= #2 ID_EX_type;
EX_MEM_IR <= #2 ID_EX_IR;
TAKEN_BRANCH <= #2 0;
case (ID_EX_type)
RR_ALU: begin
case (ID_EX_IR[31:26]) // "opcode"
ADD: EX_MEM_ALUOut <= #2 ID_EX_A + ID_EX_B;
SUB: EX_MEM_ALUOut <= #2 ID_EX_A - ID_EX_B;
AND: EX_MEM_ALUOut <= #2 ID_EX_A & ID_EX_B;
OR: EX_MEM_ALUOut <= #2 ID_EX_A | ID_EX_B;
SLT: EX_MEM_ALUOut <= #2 ID_EX_A < ID_EX_B;
MUL: EX_MEM_ALUOut <= #2 ID_EX_A * ID_EX_B;
default: EX_MEM_ALUOut <= #2 32'hxxxxxxxx;
endcase
end
RM_ALU: begin
case (ID_EX_IR[31:26]) // "opcode"
ADDI: EX_MEM_ALUOut <= #2 ID_EX_A + ID_EX_Imm;
SUBI: EX_MEM_ALUOut <= #2 ID_EX_A - ID_EX_Imm;
SLTI: EX_MEM_ALUOut <= #2 ID_EX_A < ID_EX_Imm;
default: EX_MEM_ALUOut <= #2 32'hxxxxxxxx;
endcase
end
LOAD, STORE:
begin
EX_MEM_ALUOut <= #2 ID_EX_A + ID_EX_Imm;
EX_MEM_B <= #2 ID_EX_B;
end
BRANCH: begin
EX_MEM_ALUOut <= #2 ID_EX_NPC + ID_EX_Imm;
EX_MEM_cond <= #2 (ID_EX_A == 0);
end
endcase
end
always @(posedge clk2) // MEM Stage
if (HALTED == 0)
begin
MEM_WB_type <= EX_MEM_type;
MEM_WB_IR <= #2 EX_MEM_IR;
case (EX_MEM_type)
RR_ALU, RM_ALU:
MEM_WB_ALUOut <= #2 EX_MEM_ALUOut;
LOAD: MEM_WB_LMD <= #2 Mem[EX_MEM_ALUOut];
STORE: if (TAKEN_BRANCH == 0) // Disable write
Mem[EX_MEM_ALUOut] <= #2 EX_MEM_B;
endcase
end
always @(posedge clk1) // WB Stage
begin
if (TAKEN_BRANCH == 0) // Disable write if branch taken
case (MEM_WB_type)
RR_ALU: Reg[MEM_WB_IR[15:11]] <= #2 MEM_WB_ALUOut; // "rd"
RM_ALU: Reg[MEM_WB_IR[20:16]] <= #2 MEM_WB_ALUOut; // "rt"
LOAD: Reg[MEM_WB_IR[20:16]] <= #2 MEM_WB_LMD; // "rt"
HALT: HALTED <= #2 1'b1;
endcase
end
endmodule