-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_2015_04_08_frequency.m
466 lines (398 loc) · 18.4 KB
/
analysis_2015_04_08_frequency.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
cd matrices
load filtered_db_2015_02_24
cd ..
FILE_IN=fopen('frequency_2015_04_08.txt', 'wt');
[r,c]=size(filtered_final);
filtered_data=filtered_final(2:r,:);
headers=filtered_final(1,:);
variables={'LifetimeSU_Note1/LifetimeSU_11',...
'LifetimeSU_Note1/LifetimeSU_12', 'LifetimeSU_Note1/LifetimeSU_13', 'LifetimeSU_Note1/LifetimeSU_24', ...
'LifetimeSU_Note1/LifetimeSU_27', ...
'LifetimeSU_Note1/LifetimeSU_28', 'LifetimeSU_Note1/LifetimeSU_30', 'LifetimeSU_Note1/LifetimeSU_48' ...
'DaysSU_Note1/DaysSU_25_group/DaysSU_76', 'DaysSU_Note1/DaysSU_26_group/DaysSU_78', ...
'DaysSU_Note1/DaysSU_104', 'DaysSU_Note1/DaysSU_106', 'DaysSU_Note1/DaysSU_124'};
labels={'Other drugs used in lifetime',...
'regular cocaine use', 'regular crack use', 'regular speedball use',...
'Injected drugs', ...
'regular injected cocaine use', 'regular injected crack use', 'regular injected speedball use'...
'cocaine use in the past 30 days', 'crack use in the past 30 days', ...
'injected cocaine use in the past 30 days', 'injected crack use in the past 30 days', 'injected speedball use in the past 30 days' };
type=[1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6, 6, 6];
drugs={'cocaine', 'crack', 'speedball'};
indx_mat=zeros(r-1,3);
indx_mat2=zeros(r-1,3);
reg_mat=zeros(3,r-1);
reg_inj_mat=zeros(3,r-1);
for i=1:numel(variables)
D=variables{i};
indx=find(strcmp(headers,D)==1);
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
if (type(i)==1) %ANY USE
cocaine_mat=zeros(r-1,1);
crack_mat=zeros(r-1,1);
speed_mat=zeros(r-1,1);
for j=1:r-1
temp=[' ' data_mat{j} ' '];
indx=strfind(temp,' 1 ');
if isempty(indx)==0
cocaine_mat(j)=1;
end
indx=strfind(temp,' 2 ');
if isempty(indx)==0
crack_mat(j)=1;
end
indx=strfind(temp,' 13 ');
if isempty(indx)==0
speed_mat(j)=1;
end
end
indx_cocaine=find(cocaine_mat==1);
indx_crack=find(crack_mat==1);
indx_speedball=find(speed_mat==1);
%to use later!
indx_mat(indx_cocaine,1)=1;
indx_mat(indx_crack, 2)=1;
indx_mat(indx_speedball,3)=1;
fprintf(FILE_IN, '%s\n', 'Lifetime drug use');
cocaine=numel(indx_cocaine)/(r-1)*100;
temp=['Ever used cocaine: ' num2str(numel(indx_cocaine)) ' (' num2str(sprintf('%.1f', cocaine)) '%)'];
fprintf(FILE_IN, '%s\n', temp);
crack=numel(indx_crack)/(r-1)*100;
temp=['Ever used crack: ' num2str(numel(indx_crack)) ' (' num2str(sprintf('%.1f',crack)) '%)'];
fprintf(FILE_IN, '%s\n', temp);
speedball=numel(indx_speedball)/(r-1)*100;
temp=['Ever used speedball: ' num2str(numel(indx_speedball)) ' (' num2str(sprintf('%.1f',speedball)) '%)'];
fprintf(FILE_IN, '%s\n\n', temp);
elseif (type(i)==2) %REGULAR USE
new_mat=zeros(r-1,1);
for j=1:r-1
temp='';
x=data_mat{j};
k=strfind(x,' months');
k2=strfind(x, ' month');
if isempty(k)==0
k1=(k(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
elseif isempty(k2)==0
k1=(k2(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
else
new_mat(j)=x;
end
end
% new_mat(new_mat==77)=NaN;
% new_mat(new_mat==88)=NaN;
% new_mat(new_mat==99)=NaN;
indx_type=find(indx_mat(:,i-1)==1); %the number of people reporting ever using from above
indx_reg=find(new_mat>0);
indx_reg2=find(new_mat>5);
indx_final=intersect(indx_type, indx_reg);
indx_final2=intersect(indx_type, indx_reg2);
reg_users=numel(indx_final);
all_users=numel(indx_type);
reg_users2=numel(indx_final2);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
per_of_users2=reg_users2/all_users*100;
per_of_all2=reg_users2/(r-1)*100;
%those who report 6+ months to use in the analysis below
reg_mat(i-1,indx_reg2)=1;
indx_nan=find(new_mat==0);
new_mat(indx_nan)=NaN;
mean_use=nanmean(new_mat);
std_use=nanstd(new_mat);
min_use=min(new_mat);
max_use=max(new_mat);
%find the number who report any regular use
fprintf(FILE_IN, '%s\n', labels{i} );
temp=['Average number of months of ' labels{i} ' ' num2str(sprintf('%.1f',mean_use)) ' (' num2str(sprintf('%.1f',std_use)) ')'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Range in number of months of ' labels{i} ' ' num2str(min_use) '-' num2str(max_use)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Participants with more than 1 month of ' labels{i} ' ' num2str(reg_users)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-1} ' users ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all participants ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n\n', temp );
temp=['Participants with 6 or more months of ' labels{i} ' ' num2str(reg_users2)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-1} ' users ' num2str(sprintf('%.1f', per_of_users2)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all participants ' num2str(sprintf('%.1f', per_of_all2)) '%'];
fprintf(FILE_IN, '%s\n\n', temp );
elseif (type(i)==3) %DRUG INJECTION
cocaine_mat2=zeros(r-1,1);
crack_mat2=zeros(r-1,1);
speed_mat2=zeros(r-1,1);
for j=1:r-1
temp=[' ' data_mat{j} ' '];
indx=strfind(temp,' 1 ');
if isempty(indx)==0
cocaine_mat2(j)=1;
end
indx=strfind(temp,' 2 ');
if isempty(indx)==0
crack_mat2(j)=1;
end
indx=strfind(temp,' 11 ');
if isempty(indx)==0
speed_mat2(j)=1;
end
end
indx_cocaine2=find(cocaine_mat2==1);
indx_crack2=find(crack_mat2==1);
indx_speedball2=find(speed_mat2==1);
%to use later!
indx_mat2(indx_cocaine2,1)=1;
indx_mat2(indx_crack2, 2)=1;
indx_mat2(indx_speedball2,3)=1;
fprintf(FILE_IN, '%s\n', 'Lifetime injected drug use');
cocaine=numel(indx_cocaine2)/(r-1)*100;
temp=['Number ever injected cocaine: ' num2str(numel(indx_cocaine2)) ];
fprintf(FILE_IN, '%s\n', temp);
indx_final=intersect(indx_cocaine2, indx_cocaine);
reg_users=numel(indx_final);
all_users=numel(indx_cocaine);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
temp=['Percentage of all partipcants injected ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage injected of all cocaine users ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n\n', temp );
crack=numel(indx_crack2)/(r-1)*100;
temp=['Number ever injected crack: ' num2str(numel(indx_crack2))];
fprintf(FILE_IN, '%s\n', temp);
indx_final=intersect(indx_crack2, indx_crack);
reg_users=numel(indx_final);
all_users=numel(indx_crack);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
temp=['Percentage of all participants injected ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage injected of all crack users ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n\n', temp );
speedball=numel(indx_speedball2)/(r-1)*100;
temp=['Ever injected speedball: ' num2str(numel(indx_speedball2))];
fprintf(FILE_IN, '%s\n', temp);
indx_final=intersect(indx_speedball2, indx_speedball);
reg_users=numel(indx_final);
all_users=numel(indx_speedball);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
temp=['Percentage of all participants injected ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage injected of all speedball users ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n\n', temp );
elseif (type(i)==4) %REGULAR DRUG INJECTION
new_mat=zeros(r-1,1);
for j=1:r-1
temp='';
x=data_mat{j};
k=strfind(x,' months');
k2=strfind(x, ' month');
if isempty(k)==0
k1=(k(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
elseif isempty(k2)==0
k1=(k2(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
else
new_mat(j)=x;
end
end
% new_mat(new_mat==77)=NaN;
% new_mat(new_mat==88)=NaN;
% new_mat(new_mat==99)=NaN;
indx_type=find(indx_mat(:,i-5)==1); %the number of people reporting ever using from above
indx_reg=find(new_mat>0);
indx_final=intersect(indx_type, indx_reg);
reg_users=numel(indx_final);
indx_reg2=find(new_mat>5);
indx_final2=intersect(indx_type, indx_reg2);
reg_users2=numel(indx_final2);
indx_type2=find(indx_mat2(:,i-5)==1);
indx_final2=intersect(indx_type2, indx_reg);
inject_users=numel(indx_type2);
per_of_inject=reg_users/inject_users*100;
per_of_inject2=reg_users2/inject_users*100;
%those who report 6+ months to use in the analysis below
reg_inj_mat(i-5,indx_reg2)=1;
all_users=numel(indx_type);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
per_of_users2=reg_users2/all_users*100;
per_of_all2=reg_users2/(r-1)*100;
indx_nan=find(new_mat==0);
new_mat(indx_nan)=NaN;
mean_use=nanmean(new_mat);
std_use=nanstd(new_mat);
min_use=min(new_mat);
max_use=max(new_mat);
%find the number who report any regular use
fprintf(FILE_IN, '%s\n', labels{i} );
temp=['Average number of months of ' labels{i} ' ' num2str(sprintf('%.1f',mean_use)) ' (' num2str(sprintf('%.1f',std_use)) ')'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Range in number of months of ' labels{i} ' ' num2str(min_use) '-' num2str(max_use)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Participants with more than 1 month of ' labels{i} ' ' num2str(reg_users)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-5} ' injection users ' num2str(sprintf('%.1f', per_of_inject)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-5} ' users ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all participants ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Participants with 6 or more months of ' labels{i} ' ' num2str(reg_users2)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-5} ' injection users ' num2str(sprintf('%.1f', per_of_inject2)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-5} ' users ' num2str(sprintf('%.1f', per_of_users2)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all participants ' num2str(sprintf('%.1f', per_of_all2)) '%'];
fprintf(FILE_IN, '%s\n\n', temp );
elseif type(i)==5
new_mat=zeros(r-1,1);
for j=1:r-1
temp='';
x=data_mat{j};
k=strfind(x,' days');
k2=strfind(x, ' day');
if isempty(k)==0
k1=(k(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
elseif isempty(k2)==0
k1=(k2(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
else
new_mat(j)=x;
end
end
% new_mat(new_mat==77)=NaN;
% new_mat(new_mat==88)=NaN;
% new_mat(new_mat==99)=NaN;
indx_type=find(indx_mat(:,i-8)==1); %the number of people reporting ever using from above
indx_reg=find(new_mat>0);
indx_final=intersect(indx_type, indx_reg);
reg_users=numel(indx_final);
all_users=numel(indx_type);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
indx_nan=find(new_mat==0);
new_mat(indx_nan)=NaN;
mean_use=nanmean(new_mat);
std_use=nanstd(new_mat);
min_use=min(new_mat);
max_use=max(new_mat);
%find the number who report any regular use
fprintf(FILE_IN, '%s\n', [drugs{i-8} ' use in the past 30 days'] );
temp=['Participants with more than 1 day of ' labels{i} ' ' num2str(reg_users)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Average number of days of ' labels{i} ' ' num2str(sprintf('%.1f',mean_use)) ' (' num2str(sprintf('%.1f',std_use)) ')'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Range in number of days of ' labels{i} ' ' num2str(min_use) '-' num2str(max_use)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-8} ' users with more than 1 day of ' labels{i} ' ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all participants with more than 1 day of ' labels{i} ' ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n', temp );
% Life time REGULAR use [DRUG] at least 6 months AND use in the last 30 days
indx_month=find(reg_mat(i-8,:)==1);
indx_combo=intersect(indx_month, indx_reg);
fprintf(FILE_IN, '%s\n', ['Participants with at least 6 months of regular ' drugs{i-8} ' use and ' drugs{i-8} ' use in the past 30 days'] );
x=numel(indx_combo);
p=x/(r-1)*100;
temp=['N = ' num2str(x) ' (' num2str(sprintf('%.1f', p)) '%)'];
fprintf(FILE_IN, '%s\n\n', temp );
elseif type(i)==6
new_mat=zeros(r-1,1);
for j=1:r-1
temp='';
x=data_mat{j};
k=strfind(x,' days');
k2=strfind(x, ' day');
if isempty(k)==0
k1=(k(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
elseif isempty(k2)==0
k1=(k2(1)-1);
for p_=1:k1
c=x(p_);
temp=[temp c];
end
new_mat(j)=str2double(temp);
else
new_mat(j)=x;
end
end
% new_mat(new_mat==77)=NaN;
% new_mat(new_mat==88)=NaN;
% new_mat(new_mat==99)=NaN;
indx_type=find(indx_mat2(:,i-10)==1); %the number of people reporting ever using from above
indx_reg=find(new_mat>0);
indx_final=intersect(indx_type, indx_reg);
reg_users=numel(indx_final);
all_users=numel(indx_type);
per_of_users=reg_users/all_users*100;
per_of_all=reg_users/(r-1)*100;
indx_nan=find(new_mat==0);
new_mat(indx_nan)=NaN;
mean_use=nanmean(new_mat);
std_use=nanstd(new_mat);
min_use=min(new_mat);
max_use=max(new_mat);
%find the number who report any regular use
fprintf(FILE_IN, '%s\n', ['Injected ' drugs{i-10} ' use in the past 30 days'] );
temp=['Participants with more than 1 day of ' labels{i} ' ' num2str(reg_users)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Average number of days of ' labels{i} ' ' num2str(sprintf('%.1f',mean_use)) ' (' num2str(sprintf('%.1f',std_use)) ')'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Range in number of days of ' labels{i} ' ' num2str(min_use) '-' num2str(max_use)];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all ' drugs{i-10} ' injection users with more than 1 day of ' labels{i} ' ' num2str(sprintf('%.1f', per_of_users)) '%'];
fprintf(FILE_IN, '%s\n', temp );
temp=['Percentage of all participants with more than 1 day of ' labels{i} ' ' num2str(sprintf('%.1f', per_of_all)) '%'];
fprintf(FILE_IN, '%s\n', temp );
% Life time REGULAR use [DRUG] at least 6 months AND use in the last 30 days
indx_month=find(reg_inj_mat(i-10,:)==1);
indx_combo=intersect(indx_month, indx_reg);
fprintf(FILE_IN, '%s\n', ['Participants with at least 6 months of regular injected ' drugs{i-10} ' use and injected ' drugs{i-10} ' use in the past 30 days'] );
x=numel(indx_combo);
p=x/(r-1)*100;
temp=['N = ' num2str(x) ' (' num2str(sprintf('%.1f', p)) '%)'];
fprintf(FILE_IN, '%s\n\n', temp );
end
end
fclose(FILE_IN);