-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoverdose_analysis_social_use.m
160 lines (142 loc) · 4.3 KB
/
overdose_analysis_social_use.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
load filtered_final_2015_05_06
load AGES
[r,c]=size(filtered_final);
filtered_data=filtered_final(2:r,:);
headers=filtered_final(1,:);
z=1.96;
OD='Overdose_8';
indx=find(strcmp(headers,OD)==1);
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
data_mat=cell2mat(data_mat);
indx_OD=find(data_mat==1);
indx_noOD=find(data_mat==0);
indx_all=find(data_mat==1 | data_mat==0);
OVERDOSE=filtered_data(indx_OD,:);
AGES=round(AGES(indx_OD));
results=cell.empty;
results{1,1}='Question';
results{1,2}='Code';
results{1,3}='Mean OD';
results{1,4}='SD OD';
results{1,5}='95% CI OD';
results{1,6}='Mean no OD';
results{1,7}='SD no OD';
results{1,8}='95% CI no OD';
results{1,9}='pvalue';
%TOtal number of people they know who inject drugs NetChar_22
A='NetChar_Note1/NetChar_22';
results{2,1}='Number of people they know who inject drugs';
indx=find(strcmp(headers,A)==1);
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
data_mat=cell2mat(data_mat);
data_OD=data_mat(indx_OD);
statmat(1:numel(data_OD),1)=data_OD;
m=nanmean(data_OD);
s=nanstd(data_OD);
results{2,3}=sprintf('%0.1f',m);
results{2,4}=sprintf('%0.1f',s);
N=numel(indx_OD);
upper=m+z*s/sqrt(N);
lower=m-z*s/sqrt(N);
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results{2,5}=[lower '-' upper];
data_noOD=data_mat(indx_noOD);
statmat(1:numel(data_noOD),2)=data_noOD;
m=nanmean(data_noOD);
s=nanstd(data_noOD);
results{2,6}=sprintf('%0.1f',m);
results{2,7}=sprintf('%0.1f',s);
N=numel(indx_noOD);
upper=m+z*s/sqrt(N);
lower=m-z*s/sqrt(N);
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results{2,8}=[lower '-' upper];
[h,p]=ttest2(statmat(:,1), statmat(:,2));
results{2,9}=p;
%How many people do you know of heroin and PO users who are 18-29
%who you have seen in the last 30 days
A='Lastquestion';
results{3,1}='Number of people they know who are heroin and PO users 18-29 seen in the last 30 days';
indx=find(strcmp(headers,A)==1);
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
data_mat=cell2mat(data_mat);
data_OD=data_mat(indx_OD);
statmat(1:numel(data_OD),1)=data_OD;
m=nanmean(data_OD);
s=nanstd(data_OD);
results{3,3}=sprintf('%0.1f',m);
results{3,4}=sprintf('%0.1f',s);
N=numel(indx_OD);
upper=m+z*s/sqrt(N);
lower=m-z*s/sqrt(N);
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results{3,5}=[lower '-' upper];
data_noOD=data_mat(indx_noOD);
statmat(1:numel(data_noOD),2)=data_noOD;
m=nanmean(data_noOD);
s=nanstd(data_noOD);
results{3,6}=sprintf('%0.1f',m);
results{3,7}=sprintf('%0.1f',s);
N=numel(indx_noOD);
upper=m+z*s/sqrt(N);
lower=m-z*s/sqrt(N);
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results{3,8}=[lower '-' upper];
[h,p]=ttest2(statmat(:,1), statmat(:,2));
results{3,9}=p;
%In the past 30 days how many people have you injected drugs with? NetInj_3
%
A='NetInj_Note1/NetInj_1_group/NetInj_3';
results{4,1}='Number of people in the last 30 days they have injected drugs with';
stat_mat=nan(260,2);
x_plot=zeros(2,2);
std_plot=zeros(2,2);
indx=find(strcmp(headers,A)==1);
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
data_mat=cell2mat(data_mat);
data_OD=data_mat(indx_OD);
statmat(1:numel(data_OD),1)=data_OD;
m=nanmean(data_OD);
s=nanstd(data_OD);
results{4,3}=sprintf('%0.1f',m);
results{4,4}=sprintf('%0.1f',s);
N=numel(indx_OD);
upper=m+z*s/sqrt(N);
lower=m-z*s/sqrt(N);
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results{4,5}=[lower '-' upper];
data_noOD=data_mat(indx_noOD);
statmat(1:numel(data_noOD),2)=data_noOD;
m=nanmean(data_noOD);
s=nanstd(data_noOD);
results{4,6}=sprintf('%0.1f',m);
results{4,7}=sprintf('%0.1f',s);
N=numel(indx_noOD);
upper=m+z*s/sqrt(N);
lower=m-z*s/sqrt(N);
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results{4,8}=[lower '-' upper];
[h,p]=ttest2(statmat(:,1), statmat(:,2));
results{4,9}=p;