-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
439 lines (373 loc) · 16.1 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# -*- coding: utf-8 -*-
# File: data.py
import cv2
import numpy as np
import copy
from tensorpack.utils.argtools import memoized, log_once
from tensorpack.dataflow import (imgaug, TestDataSpeed, MultiProcessMapDataZMQ,
MultiThreadMapData, MapDataComponent,
DataFromList)
from tensorpack.utils import logger
# import tensorpack.utils.viz as tpviz
from coco import COCODetection
from utils.generate_anchors import generate_anchors
from utils.np_box_ops import area as np_area
from common import (DataFromListOfDict, CustomResize,
filter_boxes_inside_shape, box_to_point8, point8_to_box,
segmentation_to_mask)
from config import config as cfg
try:
import pycocotools.mask as cocomask
# Much faster than utils/np_box_ops
def np_iou(A, B):
def to_xywh(box):
box = box.copy()
box[:, 2] -= box[:, 0]
box[:, 3] -= box[:, 1]
return box
ret = cocomask.iou(
to_xywh(A), to_xywh(B), np.zeros((len(B), ), dtype=np.bool))
# can accelerate even more, if using float32
return ret.astype('float32')
except ImportError:
from utils.np_box_ops import iou as np_iou
class MalformedData(BaseException):
pass
@memoized
def get_all_anchors(stride=None, sizes=None):
"""
Get all anchors in the largest possible image, shifted, floatbox
Args:
stride (int): the stride of anchors.
sizes (tuple[int]): the sizes (sqrt area) of anchors
Returns:
anchors: SxSxNUM_ANCHORx4, where S == ceil(MAX_SIZE/STRIDE), floatbox
The layout in the NUM_ANCHOR dim is NUM_RATIO x NUM_SIZE.
"""
if stride is None:
stride = cfg.RPN.ANCHOR_STRIDE
if sizes is None:
sizes = cfg.RPN.ANCHOR_SIZES
# Generates a NAx4 matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors
# are centered on stride / 2, have (approximate) sqrt areas of the specified
# sizes, and aspect ratios as given.
cell_anchors = generate_anchors(
stride,
scales=np.array(sizes, dtype=np.float) / stride,
ratios=np.array(cfg.RPN.ANCHOR_RATIOS, dtype=np.float))
# anchors are intbox here.
# anchors at featuremap [0,0] are centered at fpcoor (8,8) (half of stride)
max_size = cfg.PREPROC.MAX_SIZE
field_size = int(np.ceil(max_size / stride))
shifts = np.arange(0, field_size) * stride
shift_x, shift_y = np.meshgrid(shifts, shifts)
shift_x = shift_x.flatten()
shift_y = shift_y.flatten()
shifts = np.vstack((shift_x, shift_y, shift_x, shift_y)).transpose()
# Kx4, K = field_size * field_size
K = shifts.shape[0]
A = cell_anchors.shape[0]
field_of_anchors = (cell_anchors.reshape((1, A, 4)) + shifts.reshape(
(1, K, 4)).transpose((1, 0, 2)))
field_of_anchors = field_of_anchors.reshape((field_size, field_size, A, 4))
# FSxFSxAx4
# Many rounding happens inside the anchor code anyway
# assert np.all(field_of_anchors == field_of_anchors.astype('int32'))
field_of_anchors = field_of_anchors.astype('float32')
field_of_anchors[:, :, :, [2, 3]] += 1
return field_of_anchors
@memoized
def get_all_anchors_fpn(strides=None, sizes=None):
"""
Returns:
[anchors]: each anchors is a SxSx NUM_ANCHOR_RATIOS x4 array.
"""
if strides is None:
strides = cfg.FPN.ANCHOR_STRIDES
if sizes is None:
sizes = cfg.RPN.ANCHOR_SIZES
assert len(strides) == len(sizes)
foas = []
for stride, size in zip(strides, sizes):
foa = get_all_anchors(stride=stride, sizes=(size, ))
foas.append(foa)
return foas
def get_anchor_labels(anchors, gt_boxes, crowd_boxes):
"""
Label each anchor as fg/bg/ignore.
Args:
anchors: Ax4 float
gt_boxes: Bx4 float
crowd_boxes: Cx4 float
Returns:
anchor_labels: (A,) int. Each element is {-1, 0, 1}
anchor_boxes: Ax4. Contains the target gt_box for each anchor when the anchor is fg.
"""
# This function will modify labels and return the filtered inds
def filter_box_label(labels, value, max_num):
curr_inds = np.where(labels == value)[0]
if len(curr_inds) > max_num:
disable_inds = np.random.choice(
curr_inds, size=(len(curr_inds) - max_num), replace=False)
labels[disable_inds] = -1 # ignore them
curr_inds = np.where(labels == value)[0]
return curr_inds
NA, NB = len(anchors), len(gt_boxes)
assert NB > 0 # empty images should have been filtered already
box_ious = np_iou(anchors, gt_boxes) # NA x NB
ious_argmax_per_anchor = box_ious.argmax(axis=1) # NA,
ious_max_per_anchor = box_ious.max(axis=1)
ious_max_per_gt = np.amax(box_ious, axis=0, keepdims=True) # 1xNB
# for each gt, find all those anchors (including ties) that has the max ious with it
anchors_with_max_iou_per_gt = np.where(box_ious == ious_max_per_gt)[0]
# Setting NA labels: 1--fg 0--bg -1--ignore
anchor_labels = -np.ones((NA, ), dtype='int32') # NA,
# the order of setting neg/pos labels matter
anchor_labels[anchors_with_max_iou_per_gt] = 1
anchor_labels[ious_max_per_anchor >= cfg.RPN.POSITIVE_ANCHOR_THRESH] = 1
anchor_labels[ious_max_per_anchor < cfg.RPN.NEGATIVE_ANCHOR_THRESH] = 0
# We can label all non-ignore candidate boxes which overlap crowd as ignore
# But detectron did not do this.
# if crowd_boxes.size > 0:
# cand_inds = np.where(anchor_labels >= 0)[0]
# cand_anchors = anchors[cand_inds]
# ious = np_iou(cand_anchors, crowd_boxes)
# overlap_with_crowd = cand_inds[ious.max(axis=1) > cfg.RPN.CROWD_OVERLAP_THRES]
# anchor_labels[overlap_with_crowd] = -1
# Subsample fg labels: ignore some fg if fg is too many
target_num_fg = int(cfg.RPN.BATCH_PER_IM * cfg.RPN.FG_RATIO)
fg_inds = filter_box_label(anchor_labels, 1, target_num_fg)
# Keep an image even if there is no foreground anchors
# if len(fg_inds) == 0:
# raise MalformedData("No valid foreground for RPN!")
# Subsample bg labels. num_bg is not allowed to be too many
old_num_bg = np.sum(anchor_labels == 0)
if old_num_bg == 0:
# No valid bg in this image, skip.
raise MalformedData("No valid background for RPN!")
target_num_bg = cfg.RPN.BATCH_PER_IM - len(fg_inds)
filter_box_label(anchor_labels, 0, target_num_bg) # ignore return values
# Set anchor boxes: the best gt_box for each fg anchor
anchor_boxes = np.zeros((NA, 4), dtype='float32')
fg_boxes = gt_boxes[ious_argmax_per_anchor[fg_inds], :]
anchor_boxes[fg_inds, :] = fg_boxes
# assert len(fg_inds) + np.sum(anchor_labels == 0) == cfg.RPN.BATCH_PER_IM
return anchor_labels, anchor_boxes
def get_rpn_anchor_input(im, boxes, is_crowd):
"""
Args:
im: an image
boxes: nx4, floatbox, gt. shoudn't be changed
is_crowd: n,
Returns:
The anchor labels and target boxes for each pixel in the featuremap.
fm_labels: fHxfWxNA
fm_boxes: fHxfWxNAx4
NA will be NUM_ANCHOR_SIZES x NUM_ANCHOR_RATIOS
"""
boxes = boxes.copy()
all_anchors = np.copy(get_all_anchors())
# fHxfWxAx4 -> (-1, 4)
featuremap_anchors_flatten = all_anchors.reshape((-1, 4))
# only use anchors inside the image
inside_ind, inside_anchors = filter_boxes_inside_shape(
featuremap_anchors_flatten, im.shape[:2])
# obtain anchor labels and their corresponding gt boxes
anchor_labels, anchor_gt_boxes = get_anchor_labels(
inside_anchors, boxes[is_crowd == 0], boxes[is_crowd == 1])
# Fill them back to original size: fHxfWx1, fHxfWx4
anchorH, anchorW = all_anchors.shape[:2]
featuremap_labels = -np.ones(
(anchorH * anchorW * cfg.RPN.NUM_ANCHOR, ), dtype='int32')
featuremap_labels[inside_ind] = anchor_labels
featuremap_labels = featuremap_labels.reshape((anchorH, anchorW,
cfg.RPN.NUM_ANCHOR))
featuremap_boxes = np.zeros((anchorH * anchorW * cfg.RPN.NUM_ANCHOR, 4),
dtype='float32')
featuremap_boxes[inside_ind, :] = anchor_gt_boxes
featuremap_boxes = featuremap_boxes.reshape((anchorH, anchorW,
cfg.RPN.NUM_ANCHOR, 4))
return featuremap_labels, featuremap_boxes
def get_multilevel_rpn_anchor_input(im, boxes, is_crowd):
"""
Args:
im: an image
boxes: nx4, floatbox, gt. shoudn't be changed
is_crowd: n,
Returns:
[(fm_labels, fm_boxes)]: Returns a tuple for each FPN level.
Each tuple contains the anchor labels and target boxes for each pixel in the featuremap.
fm_labels: fHxfWx NUM_ANCHOR_RATIOS
fm_boxes: fHxfWx NUM_ANCHOR_RATIOS x4
"""
boxes = boxes.copy()
anchors_per_level = get_all_anchors_fpn()
flatten_anchors_per_level = [k.reshape((-1, 4)) for k in anchors_per_level]
all_anchors_flatten = np.concatenate(flatten_anchors_per_level, axis=0)
inside_ind, inside_anchors = filter_boxes_inside_shape(
all_anchors_flatten, im.shape[:2])
anchor_labels, anchor_gt_boxes = get_anchor_labels(
inside_anchors, boxes[is_crowd == 0], boxes[is_crowd == 1])
# map back to all_anchors, then split to each level
num_all_anchors = all_anchors_flatten.shape[0]
all_labels = -np.ones((num_all_anchors, ), dtype='int32')
all_labels[inside_ind] = anchor_labels
all_boxes = np.zeros((num_all_anchors, 4), dtype='float32')
all_boxes[inside_ind] = anchor_gt_boxes
start = 0
multilevel_inputs = []
for level_anchor in anchors_per_level:
assert level_anchor.shape[2] == len(cfg.RPN.ANCHOR_RATIOS)
anchor_shape = level_anchor.shape[:3] # fHxfWxNUM_ANCHOR_RATIOS
num_anchor_this_level = np.prod(anchor_shape)
end = start + num_anchor_this_level
multilevel_inputs.append(
(all_labels[start:end].reshape(anchor_shape),
all_boxes[start:end, :].reshape(anchor_shape + (4, ))))
start = end
assert end == num_all_anchors, "{} != {}".format(end, num_all_anchors)
return multilevel_inputs
def get_train_dataflow():
"""
Return a training dataflow. Each datapoint consists of the following:
An image: (h, w, 3),
1 or more pairs of (anchor_labels, anchor_boxes):
anchor_labels: (h', w', NA)
anchor_boxes: (h', w', NA, 4)
gt_boxes: (N, 4)
gt_labels: (N,)
If MODE_MASK, gt_masks: (N, h, w)
"""
roidbs = COCODetection.load_many(
cfg.DATA.BASEDIR, cfg.DATA.TRAIN, add_gt=True, add_mask=cfg.MODE_MASK)
"""
To train on your own data, change this to your loader.
Produce "roidbs" as a list of dict, in the dict the following keys are needed for training:
height, width: integer
file_name: str, full path to the image
boxes: numpy array of kx4 floats
class: numpy array of k integers
is_crowd: k booleans. Use k False if you don't know what it means.
segmentation: k lists of numpy arrays (one for each box).
Each list of numpy arrays corresponds to the mask for one instance.
Each numpy array in the list is a polygon of shape Nx2,
because one mask can be represented by N polygons.
If your segmentation annotations are originally masks rather than polygons,
either convert it, or the augmentation code below will need to be
changed or skipped accordingly.
"""
# Valid training images should have at least one fg box.
# But this filter shall not be applied for testing.
num = len(roidbs)
roidbs = list(
filter(lambda img: len(img['boxes'][img['is_crowd'] == 0]) > 0,
roidbs))
logger.info(
"Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}"
.format(num - len(roidbs), len(roidbs)))
ds = DataFromList(roidbs, shuffle=True)
aug = imgaug.AugmentorList([
CustomResize(cfg.PREPROC.TRAIN_SHORT_EDGE_SIZE, cfg.PREPROC.MAX_SIZE),
imgaug.Flip(horiz=True)
])
def preprocess(roidb):
fname, boxes, klass, is_crowd = roidb['file_name'], roidb[
'boxes'], roidb['class'], roidb['is_crowd']
boxes = np.copy(boxes)
im = cv2.imread(fname, cv2.IMREAD_COLOR)
assert im is not None, fname
im = im.astype('float32')
# assume floatbox as input
assert boxes.dtype == np.float32, "Loader has to return floating point boxes!"
# augmentation:
im, params = aug.augment_return_params(im)
points = box_to_point8(boxes)
points = aug.augment_coords(points, params)
boxes = point8_to_box(points)
assert np.min(np_area(boxes)) > 0, "Some boxes have zero area!"
ret = {'image': im}
# rpn anchor:
try:
if cfg.MODE_FPN:
multilevel_anchor_inputs = get_multilevel_rpn_anchor_input(
im, boxes, is_crowd)
for i, (anchor_labels,
anchor_boxes) in enumerate(multilevel_anchor_inputs):
ret['anchor_labels_lvl{}'.format(i + 2)] = anchor_labels
ret['anchor_boxes_lvl{}'.format(i + 2)] = anchor_boxes
else:
# anchor_labels, anchor_boxes
ret['anchor_labels'], ret[
'anchor_boxes'] = get_rpn_anchor_input(
im, boxes, is_crowd)
boxes = boxes[is_crowd == 0] # skip crowd boxes in training target
klass = klass[is_crowd == 0]
ret['gt_boxes'] = boxes
ret['gt_labels'] = klass
if not len(boxes):
raise MalformedData("No valid gt_boxes!")
except MalformedData as e:
log_once(
"Input {} is filtered for training: {}".format(fname, str(e)),
'warn')
return None
if cfg.MODE_MASK:
# augmentation will modify the polys in-place
segmentation = copy.deepcopy(roidb['segmentation'])
segmentation = [
segmentation[k] for k in range(len(segmentation))
if not is_crowd[k]
]
assert len(segmentation) == len(boxes)
# Apply augmentation on polygon coordinates.
# And produce one image-sized binary mask per box.
masks = []
for polys in segmentation:
polys = [aug.augment_coords(p, params) for p in polys]
masks.append(
segmentation_to_mask(polys, im.shape[0], im.shape[1]))
masks = np.asarray(masks, dtype='uint8') # values in {0, 1}
ret['gt_masks'] = masks
# from viz import draw_annotation, draw_mask
# viz = draw_annotation(im, boxes, klass)
# for mask in masks:
# viz = draw_mask(viz, mask)
# tpviz.interactive_imshow(viz)
return ret
if cfg.TRAINER == 'horovod':
ds = MultiThreadMapData(ds, 5, preprocess)
# MPI does not like fork()
else:
ds = MultiProcessMapDataZMQ(ds, 10, preprocess)
return ds
def get_eval_dataflow(shard=0, num_shards=1):
"""
Args:
shard, num_shards: to get subset of evaluation data
"""
roidbs = COCODetection.load_many(
cfg.DATA.BASEDIR, cfg.DATA.VAL, add_gt=False)
num_imgs = len(roidbs)
img_per_shard = num_imgs // num_shards
img_range = (shard * img_per_shard, (shard + 1) * img_per_shard
if shard + 1 < num_shards else num_imgs)
# no filter for training
ds = DataFromListOfDict(roidbs[img_range[0]:img_range[1]],
['file_name', 'id'])
def f(fname):
im = cv2.imread(fname, cv2.IMREAD_COLOR)
assert im is not None, fname
return im
ds = MapDataComponent(ds, f, 0)
# Evaluation itself may be multi-threaded, therefore don't add prefetch here.
return ds
if __name__ == '__main__':
import os
from tensorpack.dataflow import PrintData
cfg.DATA.BASEDIR = os.path.expanduser('~/data/coco')
ds = get_train_dataflow()
ds = PrintData(ds, 100)
TestDataSpeed(ds, 50000).start()
ds.reset_state()
for k in ds:
pass