-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_test.py
213 lines (181 loc) · 7.89 KB
/
trainer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch as t
import numpy as np
from sklearn.metrics import f1_score
from matplotlib import pyplot as plt
class Trainer_test:
f1_scores = []
def __init__(self,
model, # Model to be trained.
crit, # Loss function
optim=None, # Optimiser
train_dl=None, # Training data set
val_dl=None, # Validation (or test) data set
cuda=True, # Whether to use the GPU
early_stopping_cb=None,
PREDICTION_THRESHOLD=0.5,
save_location="checkpoints",
name="run"): # The stopping criterion.
self.device = None
self._model = model
self._name = name
self._save_location = save_location
self._f1_threshold = PREDICTION_THRESHOLD
self._crit = crit
self._optim = optim
self._train_dl = train_dl
self._val_dl = val_dl
self._cuda = cuda
self._early_stopping_cb = early_stopping_cb
if cuda:
self._model.cuda()
self._crit.cuda()
self.device = t.device('cuda:0')
def save_checkpoint(self, epoch):
t.save({'state_dict': self._model.state_dict()}, 'checkpoints/checkpoint_{:03d}.ckp'.format(epoch))
def restore_checkpoint(self, epoch_n):
ckp = t.load('checkpoints/checkpoint_{:03d}.ckp'.format(epoch_n), 'cuda' if self._cuda else None)
self._model.load_state_dict(ckp['state_dict'])
def save_onnx(self, fn):
m = self._model.cpu()
m.eval()
x = t.randn(1, 3, 300, 300, requires_grad=True)
y = self._model(x)
t.onnx.export(m, # model being run
x, # model input (or a tuple for multiple inputs)
fn, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable lenghth axes
'output': {0: 'batch_size'}})
def val_test_step(self, x, y):
# predict # propagate through the network and calculate the loss and predictions # return the loss and the predictions with t.no_grad():
outputs =self._model(x)
loss =self._crit(outputs, y)
return loss.item(), t.nn.Sigmoid()(outputs)
# def train_step(self, x, y):
# # perform following steps: # -reset the gradients # -propagate through the network # -calculate the loss # -compute gradient by backward propagation # -update weights # -return the loss
#
# self._optim.zero_grad()
# outputs = self._model(x)
# loss = self._crit(outputs, y)
# loss.backward()
# self._optim.step()
#
# return loss.item()
# def train_epoch(self):
# # set training mode # iterate through the training set # transfer the batch to "cuda()" -> the gpu if a gpu is given # perform a training step # calculate the average loss for the epoch and return it
# running_loss = []
# self._model.mode ="train"
# dataloader = self._train_dl
# for data in dataloader:
# images, labels = data
# # self.imshow(tv.utils.make_grid(images))
# if self._cuda:
# cuda = t.device("cuda:0")
# images = images.to(cuda)
# labels = labels.to(cuda)
# loss =self.train_step(images, labels)
# running_loss.append(loss)
# # print('[%d] Training loss: %.5f' % (i, loss))
# return np.mean(running_loss)
def train_step(self, _inputs, _labels):
# TODO: perform following steps:
# -reset the gradients
self._optim.zero_grad()
# -propagate through the network
outputs = self._model(_inputs)
# -calculate the loss
loss = self._crit(outputs, _labels)
# -compute gradient by backward propagation
loss.backward()
# -update weights
self._optim.step()
# -return the loss
return loss.item()
def train_epoch(self):
# set training mode
self.mode = 'train'
running_loss = []
dataloader = t.utils.data.DataLoader(self._train_dl, batch_size=32,
shuffle=True, num_workers=1)
# transfer the batch to "cuda()" -> the gpu if a gpu is given
# iterate through the training set
for data in dataloader:
# perform a training step
_inputs, _labels = data
if self._cuda:
cuda = t.device("cuda:0")
_inputs = _inputs.to(cuda)
_labels = _labels.to(cuda)
loss = self.train_step(_inputs, _labels)
running_loss.append(loss)
# print(loss)
# calculate the average loss for the epoch and return it
return np.mean(running_loss)
def val_test(self):
running_loss = []
labels_list = []
predictions_list = []
labels_array =None
predictions_array =None
dataloader = self._val_dl
with t.no_grad():
for data in dataloader:
images, labels = data
if self._cuda:
cuda = t.device("cuda:0")
images = images.to(cuda)
labels = labels.to(cuda)
loss, predictions = self.val_test_step(images, labels)
predictions = (predictions > self._f1_threshold).int()
if labels_array is None:
labels_array = labels.cpu().numpy()
predictions_array = predictions.cpu().numpy()
else:
labels_array = np.vstack((labels_array, labels.cpu().numpy()))
predictions_array = np.vstack((predictions_array, predictions.cpu().numpy()))
labels_list.append(labels.cpu().numpy())
predictions_list.append(predictions.cpu().numpy())
running_loss.append(loss)
f = f1_score(labels_array, predictions_array, average="macro")
print("Actual F1: %.3f" % f)
self.f1_scores.append(f)
return np.mean(running_loss)
def fit(self, epochs=-1):
assert self._early_stopping_cb is not None or epochs >0
epoch =0
train_loss = []
val_loss = []
while True:
if epochs != -1 and epoch >= epochs:
break
print('Epoch: [%d]------------------------' % epoch)
t_loss = self.train_epoch()
v_loss = self.val_test()
train_loss.append(t_loss)
val_loss.append(v_loss)
# self.save_checkpoint(epoch)
if self._early_stopping_cb is not None:
self._early_stopping_cb.step(v_loss)
if self._early_stopping_cb.should_stop():
break
epoch +=1
print('training loss: ', train_loss)
print('val loss: ', val_loss)
loc = self._save_location +"/" + self._name +".onnx"
self.save_onnx(loc)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(np.arange(len(self.f1_scores)), self.f1_scores, label='F1 Scores')
ax.legend()
loc = self._save_location +'/' +'metrics-{}.png'.format(self._name)
fig.savefig(loc)
return train_loss, val_loss
def imshow(self, img):
img = img /2 +0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()