generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
130 lines (100 loc) · 2.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gzip
import random
import numpy as np
import torch
import tqdm
from torch.utils.data import DataLoader, Dataset
from zeta.optim import StableAdamWUnfused
from zeta.structs import AutoregressiveWrapper
from griffin_torch import Griffin
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
# helpers
def cycle(loader):
while True:
yield from loader
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# instantiate GPT-like decoder model
model = Griffin(
num_tokens=256,
dim=512,
depth=8,
seq_len=SEQ_LEN,
mlp_mult=4,
heads=8,
dropout=0.1,
)
model = AutoregressiveWrapper(model, speculative=True)
# Use all available GPUs
if torch.cuda.device_count() > 1:
print("Using", torch.cuda.device_count(), "GPUs!")
model = torch.nn.DataParallel(model)
model.cuda()
# prepare enwik8 data
with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(
vaX
)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(
0, self.data.size(0) - self.seq_len, (1,)
)
full_seq = self.data[
rand_start : rand_start + self.seq_len + 1
].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
# optimizer
optim = StableAdamWUnfused(
model.parameters(),
lr=LEARNING_RATE,
)
# training
for i in tqdm.tqdm(
range(NUM_BATCHES), mininterval=10.0, desc="training"
):
model.train()
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.mean().backward()
print(f"training loss: {loss.mean().item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader))
print(f"validation loss: {loss.mean().item()}")
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:-1]
prime = decode_tokens(inp)
print("%s \n\n %s", (prime, "*" * 100))
sample = model.module.generate(
inp[None, ...], GENERATE_LENGTH
)
output_str = decode_tokens(sample[0])
print(output_str)