forked from stanford-oval/storm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface.py
609 lines (495 loc) · 20.5 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import concurrent.futures
import dspy
import functools
import hashlib
import json
import logging
import time
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Dict, List, Optional, Union, TYPE_CHECKING
from .utils import ArticleTextProcessing
logging.basicConfig(
level=logging.INFO, format="%(name)s : %(levelname)-8s : %(message)s"
)
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from .logging_wrapper import LoggingWrapper
class InformationTable(ABC):
"""
The InformationTable class serves as data class to store the information
collected during KnowledgeCuration stage.
Create subclass to incorporate more information as needed. For example,
in STORM paper https://arxiv.org/pdf/2402.14207.pdf, additional information
would be perspective guided dialogue history.
"""
def __init__(self):
pass
@abstractmethod
def retrieve_information(**kwargs):
pass
class Information:
"""Class to represent detailed information.
Inherits from Information to include a unique identifier (URL), and extends
it with a description, snippets, and title of the storm information.
Attributes:
description (str): Brief description.
snippets (list): List of brief excerpts or snippets.
title (str): The title or headline of the information.
url (str): The unique URL (serving as UUID) of the information.
"""
def __init__(self, url, description, snippets, title, meta=None):
"""Initialize the Information object with detailed attributes.
Args:
url (str): The unique URL serving as the identifier for the information.
description (str): Detailed description.
snippets (list): List of brief excerpts or snippet.
title (str): The title or headline of the information.
"""
self.description = description
self.snippets = snippets
self.title = title
self.url = url
self.meta = meta if meta is not None else {}
self.citation_uuid = -1
def __hash__(self):
return hash(
(
self.url,
tuple(sorted(self.snippets)),
)
)
def __eq__(self, other):
if not isinstance(other, Information):
return False
return (
self.url == other.url
and set(self.snippets) == set(other.snippets)
and self._meta_str() == other._meta_str()
)
def __hash__(self):
return int(
self._md5_hash((self.url, tuple(sorted(self.snippets)), self._meta_str())),
16,
)
def _meta_str(self):
"""Generate a string representation of relevant meta information."""
return f"Question: {self.meta.get('question', '')}, Query: {self.meta.get('query', '')}"
def _md5_hash(self, value):
"""Generate an MD5 hash for a given value."""
if isinstance(value, (dict, list, tuple)):
value = json.dumps(value, sort_keys=True)
return hashlib.md5(str(value).encode("utf-8")).hexdigest()
@classmethod
def from_dict(cls, info_dict):
"""Create a Information object from a dictionary.
Usage: info = Information.from_dict(storm_info_dict)
Args:
info_dict (dict): A dictionary containing keys 'url', 'description',
'snippets', and 'title' corresponding to the object's attributes.
Returns:
Information: An instance of Information.
"""
info = cls(
url=info_dict["url"],
description=info_dict["description"],
snippets=info_dict["snippets"],
title=info_dict["title"],
meta=info_dict.get("meta", None),
)
info.citation_uuid = int(info_dict.get("citation_uuid", -1))
return info
def to_dict(self):
return {
"url": self.url,
"description": self.description,
"snippets": self.snippets,
"title": self.title,
"meta": self.meta,
"citation_uuid": self.citation_uuid,
}
class ArticleSectionNode:
"""
The ArticleSectionNode is the dataclass for handling the section of the article.
The content storage, section writing preferences are defined in this node.
"""
def __init__(self, section_name: str, content=None):
"""
section_name: section heading in string format. E.g. Introduction, History, etc.
content: content of the section. Up to you for design choice of the data structure.
"""
self.section_name = section_name
self.content = content
self.children = []
self.preference = None
def add_child(self, new_child_node, insert_to_front=False):
if insert_to_front:
self.children.insert(0, new_child_node)
else:
self.children.append(new_child_node)
def remove_child(self, child):
self.children.remove(child)
class Article(ABC):
def __init__(self, topic_name):
self.root = ArticleSectionNode(topic_name)
def find_section(
self, node: ArticleSectionNode, name: str
) -> Optional[ArticleSectionNode]:
"""
Return the node of the section given the section name.
Args:
node: the node as the root to find.
name: the name of node as section name
Return:
reference of the node or None if section name has no match
"""
if node.section_name == name:
return node
for child in node.children:
result = self.find_section(child, name)
if result:
return result
return None
@abstractmethod
def to_string(self) -> str:
"""
Export Article object into string representation.
"""
def get_outline_tree(self):
"""
Generates a hierarchical tree structure representing the outline of the document.
Returns:
Dict[str, Dict]: A nested dictionary representing the hierarchical structure of the document's outline.
Each key is a section name, and the value is another dictionary representing the child sections,
recursively forming the tree structure of the document's outline. If a section has no subsections,
its value is an empty dictionary.
Example:
Assuming a document with a structure like:
- Introduction
- Background
- Objective
- Methods
- Data Collection
- Analysis
The method would return:
{
'Introduction': {
'Background': {},
'Objective': {}
},
'Methods': {
'Data Collection': {},
'Analysis': {}
}
}
"""
def build_tree(node) -> Dict[str, Dict]:
tree = {}
for child in node.children:
tree[child.section_name] = build_tree(child)
return tree if tree else {}
return build_tree(self.root)
def get_first_level_section_names(self) -> List[str]:
"""
Get first level section names
"""
return [i.section_name for i in self.root.children]
@classmethod
@abstractmethod
def from_string(cls, topic_name: str, article_text: str):
"""
Create an instance of the Article object from a string
"""
pass
def prune_empty_nodes(self, node=None):
if node is None:
node = self.root
node.children[:] = [
child for child in node.children if self.prune_empty_nodes(child)
]
if (node.content is None or node.content == "") and not node.children:
return None
else:
return node
class Retriever:
"""
An abstract base class for retriever modules. It provides a template for retrieving information based on a query.
This class should be extended to implement specific retrieval functionalities.
Users can design their retriever modules as needed by implementing the retrieve method.
The retrieval model/search engine used for each part should be declared with a suffix '_rm' in the attribute name.
"""
def __init__(self, rm: dspy.Retrieve, max_thread: int = 1):
self.max_thread = max_thread
self.rm = rm
def collect_and_reset_rm_usage(self):
combined_usage = []
if hasattr(getattr(self, "rm"), "get_usage_and_reset"):
combined_usage.append(getattr(self, "rm").get_usage_and_reset())
name_to_usage = {}
for usage in combined_usage:
for model_name, query_cnt in usage.items():
if model_name not in name_to_usage:
name_to_usage[model_name] = query_cnt
else:
name_to_usage[model_name] += query_cnt
return name_to_usage
def retrieve(
self, query: Union[str, List[str]], exclude_urls: List[str] = []
) -> List[Information]:
queries = query if isinstance(query, list) else [query]
to_return = []
def process_query(q):
retrieved_data_list = self.rm(
query_or_queries=[q], exclude_urls=exclude_urls
)
local_to_return = []
for data in retrieved_data_list:
for i in range(len(data["snippets"])):
# STORM generate the article with citations. We do not consider multi-hop citations.
# Remove citations in the source to avoid confusion.
data["snippets"][i] = ArticleTextProcessing.remove_citations(
data["snippets"][i]
)
storm_info = Information.from_dict(data)
storm_info.meta["query"] = q
local_to_return.append(storm_info)
return local_to_return
with concurrent.futures.ThreadPoolExecutor(
max_workers=self.max_thread
) as executor:
results = list(executor.map(process_query, queries))
for result in results:
to_return.extend(result)
return to_return
class KnowledgeCurationModule(ABC):
"""
The interface for knowledge curation stage. Given topic, return collected information.
"""
def __init__(self, retriever: Retriever):
"""
Store args and finish initialization.
"""
self.retriever = retriever
@abstractmethod
def research(self, topic) -> InformationTable:
"""
Curate information and knowledge for the given topic
Args:
topic: topic of interest in natural language.
Returns:
collected_information: collected information in InformationTable type.
"""
pass
class OutlineGenerationModule(ABC):
"""
The interface for outline generation stage. Given topic, collected information from knowledge
curation stage, generate outline for the article.
"""
@abstractmethod
def generate_outline(
self, topic: str, information_table: InformationTable, **kwargs
) -> Article:
"""
Generate outline for the article. Required arguments include:
topic: the topic of interest
information_table: knowledge curation data generated from KnowledgeCurationModule
More arguments could be
1. draft outline
2. user provided outline
Returns:
article_outline of type ArticleOutline
"""
pass
class ArticleGenerationModule(ABC):
"""
The interface for article generation stage. Given topic, collected information from
knowledge curation stage, generated outline from outline generation stage,
"""
@abstractmethod
def generate_article(
self,
topic: str,
information_table: InformationTable,
article_with_outline: Article,
**kwargs,
) -> Article:
"""
Generate article. Required arguments include:
topic: the topic of interest
information_table: knowledge curation data generated from KnowledgeCurationModule
article_with_outline: article with specified outline from OutlineGenerationModule
"""
pass
class ArticlePolishingModule(ABC):
"""
The interface for article generation stage. Given topic, collected information from
knowledge curation stage, generated outline from outline generation stage,
"""
@abstractmethod
def polish_article(self, topic: str, draft_article: Article, **kwargs) -> Article:
"""
Polish article. Required arguments include:
topic: the topic of interest
draft_article: draft article from ArticleGenerationModule.
"""
pass
def log_execution_time(func):
"""Decorator to log the execution time of a function."""
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
start_time = time.time()
result = func(self, *args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
logger.info(f"{func.__name__} executed in {execution_time:.4f} seconds")
self.time[func.__name__] = execution_time
return result
return wrapper
class LMConfigs(ABC):
"""Abstract base class for language model configurations of the knowledge curation engine.
The language model used for each part should be declared with a suffix '_lm' in the attribute name.
"""
def __init__(self):
pass
def init_check(self):
for attr_name in self.__dict__:
if "_lm" in attr_name and getattr(self, attr_name) is None:
logging.warning(
f"Language model for {attr_name} is not initialized. Please call set_{attr_name}()"
)
def collect_and_reset_lm_history(self):
history = []
for attr_name in self.__dict__:
if "_lm" in attr_name and hasattr(getattr(self, attr_name), "history"):
history.extend(getattr(self, attr_name).history)
getattr(self, attr_name).history = []
return history
def collect_and_reset_lm_usage(self):
combined_usage = []
for attr_name in self.__dict__:
if "_lm" in attr_name and hasattr(
getattr(self, attr_name), "get_usage_and_reset"
):
combined_usage.append(getattr(self, attr_name).get_usage_and_reset())
model_name_to_usage = {}
for usage in combined_usage:
for model_name, tokens in usage.items():
if model_name not in model_name_to_usage:
model_name_to_usage[model_name] = tokens
else:
model_name_to_usage[model_name]["prompt_tokens"] += tokens[
"prompt_tokens"
]
model_name_to_usage[model_name]["completion_tokens"] += tokens[
"completion_tokens"
]
return model_name_to_usage
def log(self):
return OrderedDict(
{
attr_name: getattr(self, attr_name).kwargs
for attr_name in self.__dict__
if "_lm" in attr_name and hasattr(getattr(self, attr_name), "kwargs")
}
)
class Engine(ABC):
def __init__(self, lm_configs: LMConfigs):
self.lm_configs = lm_configs
self.time = {}
self.lm_cost = {} # Cost of language models measured by in/out tokens.
self.rm_cost = {} # Cost of retrievers measured by number of queries.
def log_execution_time_and_lm_rm_usage(self, func):
"""Decorator to log the execution time, language model usage, and retrieval model usage of a function."""
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
self.time[func.__name__] = execution_time
logger.info(f"{func.__name__} executed in {execution_time:.4f} seconds")
self.lm_cost[func.__name__] = self.lm_configs.collect_and_reset_lm_usage()
if hasattr(self, "retriever"):
self.rm_cost[func.__name__] = (
self.retriever.collect_and_reset_rm_usage()
)
return result
return wrapper
def apply_decorators(self):
"""Apply decorators to methods that need them."""
methods_to_decorate = [
method_name
for method_name in dir(self)
if callable(getattr(self, method_name)) and method_name.startswith("run_")
]
for method_name in methods_to_decorate:
original_method = getattr(self, method_name)
decorated_method = self.log_execution_time_and_lm_rm_usage(original_method)
setattr(self, method_name, decorated_method)
@abstractmethod
def run_knowledge_curation_module(self, **kwargs) -> Optional[InformationTable]:
pass
@abstractmethod
def run_outline_generation_module(self, **kwarg) -> Article:
pass
@abstractmethod
def run_article_generation_module(self, **kwarg) -> Article:
pass
@abstractmethod
def run_article_polishing_module(self, **kwarg) -> Article:
pass
@abstractmethod
def run(self, **kwargs):
pass
def summary(self):
print("***** Execution time *****")
for k, v in self.time.items():
print(f"{k}: {v:.4f} seconds")
print("***** Token usage of language models: *****")
for k, v in self.lm_cost.items():
print(f"{k}")
for model_name, tokens in v.items():
print(f" {model_name}: {tokens}")
print("***** Number of queries of retrieval models: *****")
for k, v in self.rm_cost.items():
print(f"{k}: {v}")
def reset(self):
self.time = {}
self.lm_cost = {}
self.rm_cost = {}
class Agent(ABC):
"""
Interface for STORM and Co-STORM LLM agent
This class must be implemented by any subclass of `Agent` to define how the agent generates an utterance.
The generated utterance can be influenced by the conversation history, knowledge base, and any additional parameters passed via `kwargs`.
The implementation should align with the specific role and perspective of the agent, as defined by the agent's topic, role name, and role description.
Args:
knowledge_base (KnowledgeBase): The current knowledge base (e.g., mind map in Co-STORM) that contains the accumulated information relevant to the conversation.
conversation_history (List[ConversationTurn]): A list of past conversation turns, providing context for generating the next utterance.
The agent can refer to this history to maintain continuity and relevance in the conversation.
logging_wrapper (LoggingWrapper): A wrapper used for logging important events during the utterance generation process.
**kwargs: Additional arguments that can be passed to the method for more specialized utterance generation behavior depending on the agent's specific implementation.
Returns:
ConversationTurn: A new conversation turn generated by the agent, containing the agent's response, including the role, utterance type, and relevant information from the knowledge base.
Notes:
- Subclasses of `Agent` should define the exact strategy for generating the utterance, which could involve interacting with a language model, retrieving relevant knowledge, or following specific conversational policies.
- The agent's role, perspective, and the knowledge base content will influence how the utterance is formulated.
"""
from .dataclass import KnowledgeBase, ConversationTurn
def __init__(self, topic: str, role_name: str, role_description: str):
self.topic = topic
self.role_name = role_name
self.role_description = role_description
def get_role_description(self):
if self.role_description:
return f"{self.role_name}: {self.role_description}"
return self.role_name
@abstractmethod
def generate_utterance(
self,
knowledge_base: KnowledgeBase,
conversation_history: List[ConversationTurn],
logging_wrapper: "LoggingWrapper",
**kwargs,
):
pass