-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
226 lines (175 loc) · 7.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# %%
import streamlit as st
import requests
import pandas as pd
from bs4 import BeautifulSoup
from datetime import datetime
import scipy
import numpy as np
import mpmath
mpmath.mp.dps = 300
import os
from pathlib import Path
CURRENT_WORLD_POP = 8_125_468_789
EQUAL_POPULATION = CURRENT_WORLD_POP / 206
url = "https://en.wikipedia.org/wiki/2024_Summer_Olympics_medal_table"
time_format = "%Y_%m_%d %H_%M_%S"
current_working_dir = Path(os.getcwd())
max_second_delta = 60 * 30
# %%
# URL of the Wikipedia page
populations = pd.read_csv(current_working_dir / "pop.txt")
populations["population"] = pd.to_numeric(
populations["population"].str.replace(",", "")
)
def get_updated_dataframe_from_wiki(url):
# have no idea why the tutorial
table_class = "wikitable sortable jquery-tablesorter"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
indiatable = soup.find("table", {"class": "wikitable"})
# Parse the HTML content using BeautifulSoup
html_table = soup.find("table", {"class": "wikitable"})
tables_on_page = pd.read_html(str(html_table))
assert len(tables_on_page) == 1
return tables_on_page[0]
def get_most_recent_path(
current_working_dir: Path, time_format: str
) -> tuple[pd.DataFrame, datetime]:
list_of_paths = sorted(
[
(path, datetime.strptime(path.stem, time_format))
for path in current_working_dir.glob("*.csv")
],
key=lambda path: path[1],
)
if len(list_of_paths) == 0:
return "2024_08_01 18_00_18", datetime.strptime(
"2024_08_01 18_00_18", time_format
)
path, time = list_of_paths[-1]
return path, time
def get_cached_table(
url: str, current_working_dir: Path, time_format: str, max_second_delta: int
):
current_time = datetime.now()
most_recent_path, most_recent_time = get_most_recent_path(
current_working_dir, time_format
)
if (current_time - most_recent_time).total_seconds() >= max_second_delta:
most_recent_path = current_working_dir / (
current_time.strftime(time_format) + ".csv"
)
df = get_updated_dataframe_from_wiki(url)
df.to_csv(most_recent_path, index=False)
return pd.read_csv(most_recent_path)
df = get_cached_table(url, current_working_dir, time_format, max_second_delta).iloc[:-1]
rank, country_name, gold, silver, bronze, total = list(df.columns)
df = pd.merge(df, populations, how="left", on="NOC")
def poisson_cdf(k, mu):
return mpmath.nsum(lambda x: mpmath.exp(-mu) * (mu**x) / mpmath.fac(x), [0, k])
def poisson_ppf(q, mu):
k = 0
while poisson_cdf(k, mu) < q:
k += 1
if k >= 75:
return np.nan
return k
# def binomial_cdf(k, n, p):
# return mpmath.nsum(
# lambda x: mpmath.binomial(n, x) * (p**x) * ((1 - p) ** (n - x)), [0, k]
# )
def calculate_p_values(df: pd.DataFrame, column, result_name, equiv_medal_name):
# probability person wins medal
log_result_name = f"log {result_name}"
p = float(df[column].sum() / CURRENT_WORLD_POP)
prob_at_least_this_num = lambda row: float(
1 - poisson_cdf(row[column] - 1, p * row["population"])
)
population_adjusted_medals = lambda row: poisson_ppf(
float(1 - row[result_name]), EQUAL_POPULATION * p
)
df[result_name] = df.apply(prob_at_least_this_num, axis=1)
df[log_result_name] = -np.log(df[result_name])
df[equiv_medal_name] = df.apply(population_adjusted_medals, axis=1)
# we still have some precision errors with making equivilent number
# of medals, we will just linear interpolate with the square of the number medals
# if you squint at the normal distribution this will make sense particularly as
# x-mu is large compared to theta,
equiv_medal_is_nan = df[equiv_medal_name].isna()
df_no_nan = df.dropna() # [~equiv_medal_is_nan]
# y=mx+c
m, c, r_value, p_value, std_err = scipy.stats.linregress(
df_no_nan[log_result_name],
df_no_nan[equiv_medal_name] ** 2, # equivilent number of medals squared
)
# return df.loc[equiv_medal_is_nan]
df.loc[equiv_medal_is_nan, equiv_medal_name] = (
(df.loc[equiv_medal_is_nan, log_result_name] * m + c) ** 0.5
).astype(int)
return df
p_gold = "likelihood of this many golds"
equiv_num_gold = "Corrected Gold"
p_total = "likelihood of this many medals"
equiv_num_medals = "Corrected Total Medals"
df = calculate_p_values(df, gold, p_gold, equiv_num_gold)
df = calculate_p_values(df, total, p_total, equiv_num_medals)
df = df.sort_values(by=p_gold)
df = df[df[country_name] != "Individual Neutral Athletes[A]"]
df[rank] = list(range(len(df)))
df[rank] = df[rank] + 1
df["Golds per 100 Million"] = 1e8 * df["Gold"] / df["population"]
df["Medals per 100 Million"] = 1e8 * df["Total"] / df["population"]
# %%
def format_dataframe(df, advanced_statistics):
# df[p_gold] = df[p_gold].apply(lambda x: f"{x:.7f}")
df[equiv_num_medals] = df[equiv_num_medals].astype(int)
df["population"] = df["population"].fillna(0)
df["population"] = df["population"].astype(int)
if not advanced_statistics:
return (
df[
[
rank,
country_name,
"population",
gold,
equiv_num_gold,
total,
equiv_num_medals,
]
]
.rename(columns={total: "Total Medals", "population": "Population"})
.style.format({p_gold: "{:.9f}", p_total: "{:.9f}", "Population": "{:,}"})
)
return df.style.format({p_gold: "{:.9f}", p_total: "{:.9f}"})
st.title("The Olympics' most exceptional country (statistically) is...")
best_country = df[country_name].iloc[0]
html_content = f"""
<div style="background-color: #f0f0f0; padding: 20px; border-radius: 10px; text-align: center;">
<h1 style="color: #ff5733; font-size: 48px; font-family: 'Arial';">{best_country}</h1>
</div>
"""
# Display the HTML content in Streamlit
st.markdown(html_content, unsafe_allow_html=True)
left_col, right_col = st.columns([4, 1])
with left_col:
st.markdown(
"""
The table shows the number of medals a country would win if we **correctly** adjusted for population using statistics!
"""
)
with right_col:
# st.markdown("<br/><br/>", unsafe_allow_html=True)
advanced_stats_dataframe = st.checkbox("Advanced Stats")
st.dataframe(format_dataframe(df, advanced_stats_dataframe))
st.markdown("\* _Host Country_")
st.markdown(
f"""
**How did I get these numbers?**
These numbers were calculated by assuming every person in the world has an equal chance of winning a medal. The top countries had the most statistically significant performance given their population. Interpret the table as "That country is doing well given there population!". This is much more meaningful replacement for medals per Capita.
For the full methodology and code, check out: [Population Adjusted Medals](https://github.com/lachlan-git/exceptional_olympic_performance)
""",
unsafe_allow_html=True,
)
# %%