-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
1231 lines (1049 loc) · 54.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BART model, ported from the fairseq repo."""
import logging
import math
import random
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from transformers.configuration_bart import BartConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_callable
from transformers.modeling_utils import BeamHypotheses, PreTrainedModel, create_position_ids_from_input_ids
logger = logging.getLogger(__name__)
BART_PRETRAINED_MODEL_ARCHIVE_MAP = {
"bart-large": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large/pytorch_model.bin",
"bart-large-mnli": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-mnli/pytorch_model.bin",
"bart-large-cnn": "https://s3.amazonaws.com/models.huggingface.co/bert/facebook/bart-large-cnn/pytorch_model.bin",
}
BART_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matters related to general usage and behavior.
Parameters:
config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
BART_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Use BartTokenizer.encode to produce them.
Padding will be ignored by default should you provide it.
Indices can be obtained using :class:`transformers.BartTokenizer.encode(text)`.
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices in input_ids.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`, defaults to :obj:`None`):
Provide for translation and summarization training. By default, the model will create this tensor by shifting the input_ids right, following the paper.
decoder_attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, 1, tgt_seq_len, tgt_seq_len)`, `optional`, defaults to :obj:`None`):
Default behavior: generate a tensor that ignores pad tokens and future tokens, as in the paper.
If you want to change padding behavior, you should read :func:`~transformers.modeling_bart._prepare_decoder_inputs` and modify.
See diagram 1 in the paper for more info on the default strategy
"""
LARGE_NEGATIVE = -1e4
def _prepare_bart_decoder_inputs(
config, input_ids, decoder_input_ids=None, decoder_attn_mask=None,
):
"""Prepare masks that ignore padding tokens decoder and a causal lm mask for the decoder if
none are provided. This mimics the default behavior in fairseq. To override it pass in masks.
"""
pad_token_id = config.pad_token_id
need_causal_mask = not config.output_past
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
bsz, tgt_len = decoder_input_ids.size()[:2]
if decoder_attn_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
if need_causal_mask:
causal_lm_mask = torch.triu(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1)
else:
causal_lm_mask = None
new_shape = (bsz, tgt_len, tgt_len)
# make it broadcastable so can just be added to the attention coefficients
decoder_attn_mask = _combine_masks(decoder_padding_mask, causal_lm_mask, new_shape).to(device=input_ids.device)
assert decoder_attn_mask is None or decoder_attn_mask.shape == (bsz, 1, tgt_len, tgt_len)
return decoder_input_ids, decoder_attn_mask
class PretrainedBartModel(PreTrainedModel):
config_class = BartConfig
base_model_prefix = "model"
pretrained_model_archive_map = BART_PRETRAINED_MODEL_ARCHIVE_MAP
def _init_weights(self, module):
std = self.config.init_std
# called init_bert_params in fairseq
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = 1
input_ids = torch.Tensor(
[
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2],
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 2, pad_token],
]
).long()
decoder_input_ids, decoder_attn_mask = _prepare_bart_decoder_inputs(
self.config, input_ids, attention_mask=None, decoder_input_ids=None, decoder_attn_mask=None
)
dummy_inputs = {
"decoder_input_ids": decoder_input_ids,
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
"decoder_attention_mask": decoder_attn_mask,
}
return dummy_inputs
def _make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight = emb.weight # .T
return lin_layer
# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
if shape_1 != shape2:
raise AssertionError("shape mismatch: {} != {}".format(shape_1, shape2))
def _combine_masks(key_padding_mask, attn_mask, targ_size):
# targ_size = (bsz, tgt_len, src_len)
a = torch.zeros(targ_size)
b = torch.zeros(targ_size)
if key_padding_mask is not None: # (bsz, tgt_len) -> targ_size
_check_shapes(key_padding_mask.shape, targ_size[:2])
reshaped = key_padding_mask.unsqueeze(2).expand(*targ_size)
a[reshaped] = 1e-8
if attn_mask is not None: # (tgt_len, src_len) -> targ_size
_check_shapes(attn_mask.shape, targ_size[-2:])
b = attn_mask.unsqueeze(0).expand(*targ_size)
return (a + b).unsqueeze(1).clamp(LARGE_NEGATIVE,)
def shift_tokens_right(input_ids, pad_token_id):
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
prev_output_tokens = input_ids.clone()
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = input_ids[:, :-1]
return prev_output_tokens
def make_padding_mask(input_ids, padding_idx=1):
"""True for pad tokens"""
padding_mask = input_ids.eq(padding_idx)
if not padding_mask.any():
padding_mask = None
return padding_mask
# Helper Modules
class EncoderLayer(nn.Module):
def __init__(self, config: BartConfig):
super().__init__()
self.embed_dim = config.d_model
self.output_attentions = config.output_attentions
self.self_attn = SelfAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout,
)
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = F.gelu
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(self, x, encoder_padding_mask):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
for t_tgt, t_src is excluded (or masked out), =0 means it is
included in attention
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
residual = x
x, attn_weights = self.self_attn(
query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=self.output_attentions,
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return x, attn_weights
class BartEncoder(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer
is a :class:`EncoderLayer`.
Args:
config: BartConfig
"""
def __init__(self, config: BartConfig, embed_tokens):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
embed_dim = embed_tokens.embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = config.max_position_embeddings
self.embed_tokens = embed_tokens
self.embed_positions = LearnedPositionalEmbedding(config.max_position_embeddings, embed_dim, self.padding_idx,)
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = LayerNorm(embed_dim)
def forward(
self, input_ids=None, attention_mask=None,
):
"""
Args:
input_ids (LongTensor): tokens in the source language of shape
`(batch, src_len)`
attention_mask (torch.LongTensor): indicating which indices are padding tokens.
Returns:
namedtuple:
- **x** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
- **all_attentions** (List[Tensor]): Attention weights for each layer.
During training might not be of length n_layers because of layer dropout.
"""
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_ids)
x = inputs_embeds + embed_pos
x = self.layernorm_embedding(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_states, all_attentions = [], []
# encoder layers
for encoder_layer in self.layers:
if self.output_hidden_states:
encoder_states.append(x)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
x, attn = encoder_layer(x, attention_mask)
if self.output_attentions:
all_attentions.append(attn)
if self.output_hidden_states:
encoder_states.append(x)
encoder_states = [hidden_state.transpose(0, 1) for hidden_state in encoder_states]
return x, encoder_states, all_attentions
class DecoderLayer(nn.Module):
def __init__(self, config: BartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = SelfAttention(
embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = F.gelu
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.encoder_attn = SelfAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
encoder_decoder_attention=True,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(
self,
x,
encoder_hidden_states,
encoder_attn_mask=None,
layer_state=None,
attention_mask=None,
need_attn_weights=False,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attn_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
residual = x
y = x # TODO(SS): figure out why fairseq did this, then hopefully delete it
if layer_state is None:
layer_state = {}
# next line mutates layer state
x, self_attn_weights = self.self_attn(
query=x, key=y, value=y, layer_state=layer_state, need_weights=need_attn_weights, attn_mask=attention_mask,
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
assert self.encoder_attn.cache_key != self.self_attn.cache_key
x, encoder_attn_weights = self.encoder_attn(
query=x,
key=encoder_hidden_states, # could be None
value=encoder_hidden_states,
key_padding_mask=encoder_attn_mask,
layer_state=layer_state, # mutates layer state
static_kv=True,
need_weights=False, # not returning it so why compute it
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.encoder_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = F.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return (
x,
self_attn_weights,
layer_state,
) # just self_attn weights for now, following t5, layer_state = cache for decoding
class BartDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer
is a :class:`DecoderLayer`.
Args:
config: BartConfig
embed_tokens (torch.nn.Embedding): output embedding
"""
def __init__(self, config: BartConfig, embed_tokens: nn.Embedding):
super().__init__()
self.output_past = config.output_past
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.max_target_positions = config.max_position_embeddings
self.embed_tokens = embed_tokens
self.embed_positions = LearnedPositionalEmbedding(
config.max_position_embeddings, config.d_model, self.padding_idx,
)
self.layers = nn.ModuleList(
[DecoderLayer(config) for _ in range(config.decoder_layers)]
) # type: List[DecoderLayer]
self.layernorm_embedding = LayerNorm(config.d_model)
self.generation_mode = False
def forward(
self,
input_ids,
encoder_hidden_states,
encoder_padding_mask,
combined_mask,
decoder_cached_states=None,
**unused
):
"""
Includes several features from "Jointly Learning to Align and
Translate with Transformer Models" (Garg et al., EMNLP 2019).
Args:
input_ids (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_hidden_states: output from the encoder, used for
encoder-side attention
encoder_padding_mask: for ignoring pad tokens
decoder_cached_states (dict or None): dictionary used for storing state during generation
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- hidden states
- attentions
"""
# embed positions
positions = self.embed_positions(input_ids, generation_mode=self.generation_mode)
if self.generation_mode:
input_ids = input_ids[:, -1:]
positions = positions[:, -1:] # happens after we embed them
assert input_ids.ne(self.padding_idx).any()
x = self.embed_tokens(input_ids)
x += positions
x = self.layernorm_embedding(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = x.transpose(0, 1) # (seq_len, BS, model_dim)
# decoder layers
all_hidden_states = ()
all_self_attns = ()
next_decoder_cache = []
for i, decoder_layer in enumerate(self.layers):
decoder_layer # type: DecoderLayer
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
layer_state = decoder_cached_states[i] if decoder_cached_states is not None else None
x, layer_self_attn, layer_past = decoder_layer(
x,
encoder_hidden_states,
encoder_padding_mask,
layer_state=layer_state,
attention_mask=combined_mask,
need_attn_weights=self.output_attentions,
)
if self.output_past:
next_decoder_cache.append(layer_past.copy())
if self.output_hidden_states:
all_hidden_states += (x,)
if self.output_attentions:
all_self_attns += (layer_self_attn,)
# Convert shapes from (seq_len, BS, model_dim) to (BS, seq_len, model_dim)
all_hidden_states = [hidden_state.transpose(0, 1) for hidden_state in all_hidden_states]
x = x.transpose(0, 1)
if self.output_past:
next_cache = ((encoder_hidden_states, encoder_padding_mask), next_decoder_cache)
else:
next_cache = None
return x, next_cache, all_hidden_states, list(all_self_attns)
def reorder_attn_buffer(input_buffer, new_order):
"""Reorder buffered internal state (for incremental generation)."""
# input_buffer = self._get_input_buffer(incremental_state)
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
input_buffer[k] = input_buffer_k.index_select(0, new_order)
# incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return input_buffer
class SelfAttention(nn.Module):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
encoder_decoder_attention=False, # otherwise self_attention
):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.encoder_decoder_attention = encoder_decoder_attention
qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim # True for all BART
assert self.encoder_decoder_attention or qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"
def _shape(self, tensor, dim_0, bsz):
return tensor.contiguous().view(dim_0, bsz * self.num_heads, self.head_dim).transpose(0, 1)
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
layer_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = False,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
"""
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
# get here for encoder decoder cause of static_kv
if layer_state is not None: # get the last k,v and mask for reuse
saved_state = layer_state.get(self.cache_key, {})
if "prev_key" in saved_state:
# previous time steps are cached - no need to recompute key and value if they are static
if static_kv:
assert self.encoder_decoder_attention
key = value = None
else:
saved_state = None
layer_state = {}
q = self.q_proj(query) * self.scaling
if self.encoder_decoder_attention:
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
k = self.k_proj(query)
v = self.v_proj(query)
q = self._shape(q, tgt_len, bsz)
if k is not None:
k = self._shape(k, -1, bsz)
if v is not None:
v = self._shape(v, -1, bsz)
if saved_state is not None:
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)
# assert self.cache_key != 'encoder_decoder' or key_padding_mask is None
# Update cache
layer_state[self.cache_key] = {
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
"prev_key_padding_mask": key_padding_mask if not static_kv else None,
}
assert k is not None
src_len = k.size(1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
assert key_padding_mask is None or key_padding_mask.size()[:2] == (bsz, src_len,)
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool)
attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float, p=self.dropout, training=self.training,)
assert v is not None
attn_output = torch.bmm(attn_probs, v)
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
return attn_output, attn_weights
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
assert k is not None and v is not None
prev_key_padding_mask = saved_state.get("prev_key_padding_mask", None) # type: Optional[Tensor]
key_padding_mask = self._cat_prev_key_padding_mask(
key_padding_mask, prev_key_padding_mask, bsz, k.size(1), static_kv
)
return k, v, key_padding_mask
@staticmethod
def _cat_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), key_padding_mask.float()], dim=1)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current is None
elif prev_key_padding_mask is not None:
filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1))
if prev_key_padding_mask.is_cuda:
filler = filler.cuda()
new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), filler.float()], dim=1)
elif key_padding_mask is not None:
filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1))
if key_padding_mask.is_cuda:
filler = filler.cuda()
new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1)
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
class LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
Padding ids are ignored by either offsetting based on padding_idx
or by setting padding_idx to None and ensuring that the appropriate
position ids are passed to the forward function.
"""
def __init__(
self, num_embeddings: int, embedding_dim: int, padding_idx: int,
):
# if padding_idx is specified then offset the embedding ids by
# this index and adjust num_embeddings appropriately
assert padding_idx is not None
num_embeddings += padding_idx + 1 # WHY?
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx)
def forward(self, input, generation_mode=False):
"""Input is expected to be of size [bsz x seqlen]."""
if generation_mode: # the position is our current step in the decoded sequence
pos = int(self.padding_idx + input.size(1))
positions = input.data.new(1, 1).fill_(pos)
else:
positions = create_position_ids_from_input_ids(input, self.padding_idx)
return super().forward(positions)
def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True):
if torch.cuda.is_available():
try:
from apex.normalization import FusedLayerNorm
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
except ImportError:
pass
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a input_ids with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _filter_out_falsey_values(tup) -> Tuple:
"""Remove entries that are None or [] from an iterable."""
return tuple(x for x in tup if isinstance(x, torch.Tensor) or x)
RET_DOCSTRING = r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
# Public API
@add_start_docstrings(
"The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING,
)
class BartModel(PretrainedBartModel):
def __init__(self, config: BartConfig):
super().__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = BartEncoder(config, self.shared)
self.decoder = BartDecoder(config, self.shared)
self.init_weights()
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
def forward(
self,
input_ids,
attention_mask=None,
decoder_input_ids=None,
encoder_outputs=None, # type: Tuple
decoder_attention_mask=None,
decoder_cached_states=None,
):
if attention_mask is not None:
assert attention_mask.dim() == 2
attention_mask = (1.0 - attention_mask.long()) * -10000.0
assert attention_mask.max() <= 0
# make masks if user doesn't supply
if not self.decoder.generation_mode:
decoder_input_ids, decoder_attention_mask = _prepare_bart_decoder_inputs(
self.config, input_ids, decoder_input_ids=decoder_input_ids, decoder_attn_mask=decoder_attention_mask,
)
assert decoder_input_ids is not None
if encoder_outputs is None:
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
assert isinstance(encoder_outputs, tuple)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
decoder_input_ids,
encoder_outputs[0],
attention_mask,
decoder_attention_mask,
decoder_cached_states=decoder_cached_states,
)
# Attention and hidden_states will be [] or None if they aren't needed
decoder_outputs = _filter_out_falsey_values(decoder_outputs) # type: tuple
assert isinstance(decoder_outputs[0], torch.Tensor)
encoder_outputs = _filter_out_falsey_values(encoder_outputs) # type: tuple
return decoder_outputs + encoder_outputs
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
def get_output_embeddings(self):
return _make_linear_from_emb(self.shared) # make it on the fly
@add_start_docstrings(
"The bare BART Model with a language modeling head. This is the model used for summarization.",
BART_START_DOCSTRING,
)
class BartForMaskedLM(PretrainedBartModel):
base_model_prefix = "model"
def __init__(self, config: BartConfig):
super().__init__(config)
# if base_model is None:
base_model = BartModel(config)
self.model = base_model
self.lm_head = _make_linear_from_emb(self.model.shared)
def tie_weights(self):
pass # hack to prevent changing lm_head.out_features. The input and output embeddings are still the same.
@add_start_docstrings_to_callable(BART_INPUTS_DOCSTRING)
def forward(
self,
input_ids,
attention_mask=None,
encoder_outputs=None,
decoder_input_ids=None,
decoder_attention_mask=None,
decoder_cached_states=None,
lm_labels=None,
**unused
):
r"""
masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for computing the masked language modeling loss.
Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring).
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens
with labels
in ``[0, ..., config.vocab_size]``.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs:
masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
tokenizer = BartTokenizer.from_pretrained('bart-large')
model = BartForMaskedLM.from_pretrained('bart-large')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids=input_ids, lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
"""
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_cached_states=decoder_cached_states,
)
lm_logits = self.lm_head(outputs[0])
outputs = (lm_logits,) + outputs[1:] # Add hidden states and attention if they are here
if lm_labels is not None:
loss_fct = nn.CrossEntropyLoss()
# TODO(SS): do we need to ignore pad tokens in lm_labels?
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), lm_labels.view(-1))
outputs = (masked_lm_loss,) + outputs
return outputs
@staticmethod
def prepare_inputs_for_generation(input_ids, past, decoder_input_ids, attention_mask):
if past is None: # first step
encoder_outputs, decoder_cached_states = None, None
else:
encoder_outputs, decoder_cached_states = past
return {
"input_ids": input_ids, # ignored after first pass
"decoder_cached_states": decoder_cached_states,
"decoder_input_ids": decoder_input_ids,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
# "decoder_attention_mask": decoder_attention_mask,
}
@staticmethod
def _reorder_cache(past, beam_idx):
((enc_out, enc_mask), decoder_cached_states) = past
reordered_past = []
for layer_past in decoder_cached_states:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: reorder_attn_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
# reordered_layer_past = [layer_past[:, i].unsqueeze(1).clone().detach() for i in beam_idx]
# reordered_layer_past = torch.cat(reordered_layer_past, dim=1)
reordered_past.append(layer_past_new)
new_enc_out = enc_out if enc_out is None else enc_out.index_select(1, beam_idx)
new_enc_mask = enc_mask if enc_mask is None else enc_mask.index_select(0, beam_idx)
past = ((new_enc_out, new_enc_mask), reordered_past)
return past
def get_output_embeddings(self):
return self.lm_head
@torch.no_grad()
def generate(
self,
input_ids,
attention_mask=None,
max_length=20,
num_beams=1,
repetition_penalty=1.0,
length_penalty=1.0,
num_return_sequences=1,
min_len=0,
no_repeat_ngram_size=0,
):
r""" Generates sequences for models with a LM head. The method currently supports greedy or penalized greedy decoding, sampling with top-k or nucleus sampling
and beam-search.
Adapted in part from Facebook's `XLM beam search code`_ and `Fairseq beam search code`_.
.. _`XLM beam search code`:
https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529
.. _`Fairseq beam search code`:
https://github.com/pytorch/fairseq/blob/master/fairseq/sequence_generator.py
Parameters:
input_ids: (`optional`) `torch.LongTensor` of shape `(batch_size, sequence_length)`
The sequence used as a prompt for the generation. If `None` the method initializes
it as an empty `torch.LongTensor` of shape `(1,)`.
max_length: (`optional`) int
The max length of the sequence to be generated. Does not include tokens in input_ids.
num_beams: (`optional`) int
Number of beams for beam search. Must be between 1 and infinity. 1 means no beam search. Default to 1.
repetition_penalty: (`optional`) float
The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0.
length_penalty: (`optional`) float
Exponential penalty to the length. Default to 1.