forked from princeton-vl/DROID-SLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
187 lines (139 loc) · 6.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import sys
sys.path.append('droid_slam')
import cv2
import numpy as np
from collections import OrderedDict
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from data_readers.factory import dataset_factory
from lietorch import SO3, SE3, Sim3
from geom import losses
from geom.losses import geodesic_loss, residual_loss, flow_loss
from geom.graph_utils import build_frame_graph
# network
from droid_net import DroidNet
from logger import Logger
# DDP training
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
def setup_ddp(gpu, args):
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=args.world_size,
rank=gpu)
torch.manual_seed(0)
torch.cuda.set_device(gpu)
def show_image(image):
image = image.permute(1, 2, 0).cpu().numpy()
cv2.imshow('image', image / 255.0)
cv2.waitKey()
def train(gpu, args):
""" Test to make sure project transform correctly maps points """
# coordinate multiple GPUs
setup_ddp(gpu, args)
rng = np.random.default_rng(12345)
N = args.n_frames
model = DroidNet()
model.cuda()
model.train()
model = DDP(model, device_ids=[gpu], find_unused_parameters=False)
if args.ckpt is not None:
model.load_state_dict(torch.load(args.ckpt))
# fetch dataloader
db = dataset_factory(['tartan'], datapath=args.datapath, n_frames=args.n_frames, fmin=args.fmin, fmax=args.fmax)
train_sampler = torch.utils.data.distributed.DistributedSampler(
db, shuffle=True, num_replicas=args.world_size, rank=gpu)
train_loader = DataLoader(db, batch_size=args.batch, sampler=train_sampler, num_workers=2)
# fetch optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer,
args.lr, args.steps, pct_start=0.01, cycle_momentum=False)
logger = Logger(args.name, scheduler)
should_keep_training = True
total_steps = 0
while should_keep_training:
for i_batch, item in enumerate(train_loader):
optimizer.zero_grad()
images, poses, disps, intrinsics = [x.to('cuda') for x in item]
# convert poses w2c -> c2w
Ps = SE3(poses).inv()
Gs = SE3.IdentityLike(Ps)
# randomize frame graph
if np.random.rand() < 0.5:
graph = build_frame_graph(poses, disps, intrinsics, num=args.edges)
else:
graph = OrderedDict()
for i in range(N):
graph[i] = [j for j in range(N) if i!=j and abs(i-j) <= 2]
# fix first to camera poses
Gs.data[:,0] = Ps.data[:,0].clone()
Gs.data[:,1:] = Ps.data[:,[1]].clone()
disp0 = torch.ones_like(disps[:,:,3::8,3::8])
# perform random restarts
r = 0
while r < args.restart_prob:
r = rng.random()
intrinsics0 = intrinsics / 8.0
poses_est, disps_est, residuals = model(Gs, images, disp0, intrinsics0,
graph, num_steps=args.iters, fixedp=2)
geo_loss, geo_metrics = losses.geodesic_loss(Ps, poses_est, graph, do_scale=False)
res_loss, res_metrics = losses.residual_loss(residuals)
flo_loss, flo_metrics = losses.flow_loss(Ps, disps, poses_est, disps_est, intrinsics, graph)
loss = args.w1 * geo_loss + args.w2 * res_loss + args.w3 * flo_loss
loss.backward()
Gs = poses_est[-1].detach()
disp0 = disps_est[-1][:,:,3::8,3::8].detach()
metrics = {}
metrics.update(geo_metrics)
metrics.update(res_metrics)
metrics.update(flo_metrics)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
scheduler.step()
total_steps += 1
if gpu == 0:
logger.push(metrics)
if total_steps % 10000 == 0 and gpu == 0:
PATH = 'checkpoints/%s_%06d.pth' % (args.name, total_steps)
torch.save(model.state_dict(), PATH)
if total_steps >= args.steps:
should_keep_training = False
break
dist.destroy_process_group()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='bla', help='name your experiment')
parser.add_argument('--ckpt', help='checkpoint to restore')
parser.add_argument('--datasets', nargs='+', help='lists of datasets for training')
parser.add_argument('--datapath', default='datasets/TartanAir', help="path to dataset directory")
parser.add_argument('--gpus', type=int, default=4)
parser.add_argument('--batch', type=int, default=1)
parser.add_argument('--iters', type=int, default=15)
parser.add_argument('--steps', type=int, default=250000)
parser.add_argument('--lr', type=float, default=0.00025)
parser.add_argument('--clip', type=float, default=2.5)
parser.add_argument('--n_frames', type=int, default=7)
parser.add_argument('--w1', type=float, default=10.0)
parser.add_argument('--w2', type=float, default=0.01)
parser.add_argument('--w3', type=float, default=0.05)
parser.add_argument('--fmin', type=float, default=8.0)
parser.add_argument('--fmax', type=float, default=96.0)
parser.add_argument('--noise', action='store_true')
parser.add_argument('--scale', action='store_true')
parser.add_argument('--edges', type=int, default=24)
parser.add_argument('--restart_prob', type=float, default=0.2)
args = parser.parse_args()
args.world_size = args.gpus
print(args)
import os
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
args = parser.parse_args()
args.world_size = args.gpus
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12356'
mp.spawn(train, nprocs=args.gpus, args=(args,))