forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_torch_docs.py
7001 lines (5432 loc) · 216 KB
/
_torch_docs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Adds docstrings to functions defined in the torch._C"""
import re
import torch._C
from torch._C import _add_docstr as add_docstr
def parse_kwargs(desc):
"""Maps a description of args to a dictionary of {argname: description}.
Input:
(' weight (Tensor): a weight tensor\n' +
' Some optional description')
Output: {
'weight': \
'weight (Tensor): a weight tensor\n Some optional description'
}
"""
# Split on exactly 4 spaces after a newline
regx = re.compile(r"\n\s{4}(?!\s)")
kwargs = [section.strip() for section in regx.split(desc)]
kwargs = [section for section in kwargs if len(section) > 0]
return {desc.split(' ')[0]: desc for desc in kwargs}
def merge_dicts(*dicts):
return {x: d[x] for d in dicts for x in d}
common_args = parse_kwargs("""
input (Tensor): the input tensor.
out (Tensor, optional): the output tensor.
""")
reduceops_common_args = merge_dicts(common_args, parse_kwargs("""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
keepdim (bool): whether the output tensor has :attr:`dim` retained or not.
"""))
multi_dim_common = merge_dicts(reduceops_common_args, parse_kwargs("""
dim (int or tuple of ints): the dimension or dimensions to reduce.
"""), {'keepdim_details': """
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the
output tensor having 1 (or ``len(dim)``) fewer dimension(s).
"""})
single_dim_common = merge_dicts(reduceops_common_args, parse_kwargs("""
dim (int): the dimension to reduce.
"""), {'keepdim_details': """If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensor having 1 fewer dimension than :attr:`input`."""})
factory_common_args = merge_dicts(common_args, parse_kwargs("""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
"""))
factory_like_common_args = parse_kwargs("""
input (Tensor): the size of :attr:`input` will determine size of the output tensor.
layout (:class:`torch.layout`, optional): the desired layout of returned tensor.
Default: if ``None``, defaults to the layout of :attr:`input`.
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
Default: if ``None``, defaults to the dtype of :attr:`input`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, defaults to the device of :attr:`input`.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
""")
factory_data_common_args = parse_kwargs("""
data (array_like): Initial data for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, infers data type from :attr:`data`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
""")
add_docstr(torch.abs,
r"""
abs(input, out=None) -> Tensor
Computes the element-wise absolute value of the given :attr:`input` tensor.
.. math::
\text{out}_{i} = |\text{input}_{i}|
""" + r"""
Args:
{input}
{out}
Example::
>>> torch.abs(torch.tensor([-1, -2, 3]))
tensor([ 1, 2, 3])
""".format(**common_args))
add_docstr(torch.acos,
r"""
acos(input, out=None) -> Tensor
Returns a new tensor with the arccosine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \cos^{-1}(\text{input}_{i})
""" + r"""
Args:
{input}
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.3348, -0.5889, 0.2005, -0.1584])
>>> torch.acos(a)
tensor([ 1.2294, 2.2004, 1.3690, 1.7298])
""".format(**common_args))
add_docstr(torch.add,
r"""
.. function:: add(input, other, out=None)
Adds the scalar :attr:`other` to each element of the input :attr:`input`
and returns a new resulting tensor.
.. math::
\text{{out}} = \text{{input}} + \text{{other}}
If :attr:`input` is of type FloatTensor or DoubleTensor, :attr:`other` must be
a real number, otherwise it should be an integer.
Args:
{input}
value (Number): the number to be added to each element of :attr:`input`
Keyword arguments:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.0202, 1.0985, 1.3506, -0.6056])
>>> torch.add(a, 20)
tensor([ 20.0202, 21.0985, 21.3506, 19.3944])
.. function:: add(input, alpha=1, other, out=None)
Each element of the tensor :attr:`other` is multiplied by the scalar
:attr:`alpha` and added to each element of the tensor :attr:`input`.
The resulting tensor is returned.
The shapes of :attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
.. math::
\text{{out}} = \text{{input}} + \text{{alpha}} \times \text{{other}}
If :attr:`other` is of type FloatTensor or DoubleTensor, :attr:`alpha` must be
a real number, otherwise it should be an integer.
Args:
input (Tensor): the first input tensor
alpha (Number): the scalar multiplier for :attr:`other`
other (Tensor): the second input tensor
Keyword arguments:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.9732, -0.3497, 0.6245, 0.4022])
>>> b = torch.randn(4, 1)
>>> b
tensor([[ 0.3743],
[-1.7724],
[-0.5811],
[-0.8017]])
>>> torch.add(a, 10, b)
tensor([[ 2.7695, 3.3930, 4.3672, 4.1450],
[-18.6971, -18.0736, -17.0994, -17.3216],
[ -6.7845, -6.1610, -5.1868, -5.4090],
[ -8.9902, -8.3667, -7.3925, -7.6147]])
""".format(**common_args))
add_docstr(torch.addbmm,
r"""
addbmm(beta=1, input, alpha=1, batch1, batch2, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored
in :attr:`batch1` and :attr:`batch2`,
with a reduced add step (all matrix multiplications get accumulated
along the first dimension).
:attr:`input` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the
same number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
.. math::
out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i)
""" + r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha`
must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): matrix to be added
alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`)
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
{out}
Example::
>>> M = torch.randn(3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.addbmm(M, batch1, batch2)
tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653],
[ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743],
[ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
""".format(**common_args))
add_docstr(torch.addcdiv,
r"""
addcdiv(input, value=1, tensor1, tensor2, out=None) -> Tensor
Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`,
multiply the result by the scalar :attr:`value` and add it to :attr:`input`.
.. math::
\text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i}
""" + r"""
The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
input (Tensor): the tensor to be added
value (Number, optional): multiplier for :math:`\text{{tensor1}} / \text{{tensor2}}`
tensor1 (Tensor): the numerator tensor
tensor2 (Tensor): the denominator tensor
{out}
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcdiv(t, 0.1, t1, t2)
tensor([[-0.2312, -3.6496, 0.1312],
[-1.0428, 3.4292, -0.1030],
[-0.5369, -0.9829, 0.0430]])
""".format(**common_args))
add_docstr(torch.addcmul,
r"""
addcmul(input, value=1, tensor1, tensor2, out=None) -> Tensor
Performs the element-wise multiplication of :attr:`tensor1`
by :attr:`tensor2`, multiply the result by the scalar :attr:`value`
and add it to :attr:`input`.
.. math::
\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i
""" + r"""
The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
input (Tensor): the tensor to be added
value (Number, optional): multiplier for :math:`tensor1 .* tensor2`
tensor1 (Tensor): the tensor to be multiplied
tensor2 (Tensor): the tensor to be multiplied
{out}
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcmul(t, 0.1, t1, t2)
tensor([[-0.8635, -0.6391, 1.6174],
[-0.7617, -0.5879, 1.7388],
[-0.8353, -0.6249, 1.6511]])
""".format(**common_args))
add_docstr(torch.addmm,
r"""
addmm(beta=1, input, alpha=1, mat1, mat2, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
The matrix :attr:`input` is added to the final result.
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i)
""" + r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): matrix to be added
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
mat1 (Tensor): the first matrix to be multiplied
mat2 (Tensor): the second matrix to be multiplied
{out}
Example::
>>> M = torch.randn(2, 3)
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.addmm(M, mat1, mat2)
tensor([[-4.8716, 1.4671, -1.3746],
[ 0.7573, -3.9555, -2.8681]])
""".format(**common_args))
add_docstr(torch.addmv,
r"""
addmv(beta=1, input, alpha=1, mat, vec, out=None) -> Tensor
Performs a matrix-vector product of the matrix :attr:`mat` and
the vector :attr:`vec`.
The vector :attr:`input` is added to the final result.
If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
size `m`, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and
:attr:`out` will be 1-D tensor of size `n`.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec})
""" + r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers
Args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): vector to be added
alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`)
mat (Tensor): matrix to be multiplied
vec (Tensor): vector to be multiplied
{out}
Example::
>>> M = torch.randn(2)
>>> mat = torch.randn(2, 3)
>>> vec = torch.randn(3)
>>> torch.addmv(M, mat, vec)
tensor([-0.3768, -5.5565])
""".format(**common_args))
add_docstr(torch.addr,
r"""
addr(beta=1, input, alpha=1, vec1, vec2, out=None) -> Tensor
Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2`
and adds it to the matrix :attr:`input`.
Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the
outer product between :attr:`vec1` and :attr:`vec2` and the added matrix
:attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2})
""" + r"""
If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector
of size `m`, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a matrix of size
:math:`(n \times m)` and :attr:`out` will be a matrix of size
:math:`(n \times m)`.
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers
Args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): matrix to be added
alpha (Number, optional): multiplier for :math:`\text{{vec1}} \otimes \text{{vec2}}` (:math:`\alpha`)
vec1 (Tensor): the first vector of the outer product
vec2 (Tensor): the second vector of the outer product
{out}
Example::
>>> vec1 = torch.arange(1., 4.)
>>> vec2 = torch.arange(1., 3.)
>>> M = torch.zeros(3, 2)
>>> torch.addr(M, vec1, vec2)
tensor([[ 1., 2.],
[ 2., 4.],
[ 3., 6.]])
""".format(**common_args))
add_docstr(torch.allclose,
r"""
allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool
This function checks if all :attr:`input` and :attr:`other` satisfy the condition:
.. math::
\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
""" + r"""
elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to
`numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_
Args:
input (Tensor): first tensor to compare
other (Tensor): second tensor to compare
atol (float, optional): absolute tolerance. Default: 1e-08
rtol (float, optional): relative tolerance. Default: 1e-05
equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be compared as equal. Default: ``False``
Example::
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True
""")
add_docstr(torch.as_strided,
r"""
as_strided(input, size, stride, storage_offset=0) -> Tensor
Create a view of an existing `torch.Tensor` :attr:`input` with specified
:attr:`size`, :attr:`stride` and :attr:`storage_offset`.
.. warning::
More than one element of a created tensor may refer to a single memory
location. As a result, in-place operations (especially ones that are
vectorized) may result in incorrect behavior. If you need to write to
the tensors, please clone them first.
Many PyTorch functions, which return a view of a tensor, are internally
implemented with this function. Those functions, like
:meth:`torch.Tensor.expand`, are easier to read and are therefore more
advisable to use.
Args:
{input}
size (tuple or ints): the shape of the output tensor
stride (tuple or ints): the stride of the output tensor
storage_offset (int, optional): the offset in the underlying storage of the output tensor
Example::
>>> x = torch.randn(3, 3)
>>> x
tensor([[ 0.9039, 0.6291, 1.0795],
[ 0.1586, 2.1939, -0.4900],
[-0.1909, -0.7503, 1.9355]])
>>> t = torch.as_strided(x, (2, 2), (1, 2))
>>> t
tensor([[0.9039, 1.0795],
[0.6291, 0.1586]])
>>> t = torch.as_strided(x, (2, 2), (1, 2), 1)
tensor([[0.6291, 0.1586],
[1.0795, 2.1939]])
""".format(**common_args))
add_docstr(torch.as_tensor,
r"""
as_tensor(data, dtype=None, device=None) -> Tensor
Convert the data into a `torch.Tensor`. If the data is already a `Tensor` with the same `dtype` and `device`,
no copy will be performed, otherwise a new `Tensor` will be returned with computational graph retained if data
`Tensor` has ``requires_grad=True``. Similarly, if the data is an ``ndarray`` of the corresponding `dtype` and
the `device` is the cpu, no copy will be performed.
Args:
{data}
{dtype}
{device}
Example::
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a, device=torch.device('cuda'))
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([1, 2, 3])
""".format(**factory_data_common_args))
add_docstr(torch.asin,
r"""
asin(input, out=None) -> Tensor
Returns a new tensor with the arcsine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sin^{-1}(\text{input}_{i})
""" + r"""
Args:
{input}
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.5962, 1.4985, -0.4396, 1.4525])
>>> torch.asin(a)
tensor([-0.6387, nan, -0.4552, nan])
""".format(**common_args))
add_docstr(torch.atan,
r"""
atan(input, out=None) -> Tensor
Returns a new tensor with the arctangent of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \tan^{-1}(\text{input}_{i})
""" + r"""
Args:
{input}
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.2341, 0.2539, -0.6256, -0.6448])
>>> torch.atan(a)
tensor([ 0.2299, 0.2487, -0.5591, -0.5727])
""".format(**common_args))
add_docstr(torch.atan2,
r"""
atan2(input, other, out=None) -> Tensor
Returns a new tensor with the arctangent of the elements of :attr:`input`
and :attr:`other`.
The shapes of :attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the first input tensor
other (Tensor): the second input tensor
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.9041, 0.0196, -0.3108, -2.4423])
>>> torch.atan2(a, torch.randn(4))
tensor([ 0.9833, 0.0811, -1.9743, -1.4151])
""".format(**common_args))
add_docstr(torch.baddbmm,
r"""
baddbmm(beta=1, input, alpha=1, batch1, batch2, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices in :attr:`batch1`
and :attr:`batch2`.
:attr:`input` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same
number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a
:math:`(b \times n \times p)` tensor and :attr:`out` will be a
:math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the
same as the scaling factors used in :meth:`torch.addbmm`.
.. math::
\text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i)
""" + r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): the tensor to be added
alpha (Number, optional): multiplier for :math:`\text{{batch1}} \mathbin{{@}} \text{{batch2}}` (:math:`\alpha`)
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
{out}
Example::
>>> M = torch.randn(10, 3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.baddbmm(M, batch1, batch2).size()
torch.Size([10, 3, 5])
""".format(**common_args))
add_docstr(torch.bernoulli,
r"""
bernoulli(input, *, generator=None, out=None) -> Tensor
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The :attr:`input` tensor should be a tensor containing probabilities
to be used for drawing the binary random number.
Hence, all values in :attr:`input` have to be in the range:
:math:`0 \leq \text{input}_i \leq 1`.
The :math:`\text{i}^{th}` element of the output tensor will draw a
value :math:`1` according to the :math:`\text{i}^{th}` probability value given
in :attr:`input`.
.. math::
\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})
""" + r"""
The returned :attr:`out` tensor only has values 0 or 1 and is of the same
shape as :attr:`input`.
:attr:`out` can have integral ``dtype``, but :attr:`input` must have floating
point ``dtype``.
Args:
input (Tensor): the input tensor of probability values for the Bernoulli distribution
{out}
Example::
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737, 0.0950, 0.3609],
[ 0.7148, 0.0289, 0.2676],
[ 0.9456, 0.8937, 0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1., 0., 0.],
[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
""".format(**common_args))
add_docstr(torch.bincount,
r"""
bincount(input, weights=None, minlength=0) -> Tensor
Count the frequency of each value in an array of non-negative ints.
The number of bins (size 1) is one larger than the largest value in
:attr:`input` unless :attr:`input` is empty, in which case the result is a
tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least
:attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size
:attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``,
``out[n] += weights[i]`` if :attr:`weights` is specified else
``out[n] += 1``.
.. include:: cuda_deterministic.rst
Arguments:
input (Tensor): 1-d int tensor
weights (Tensor): optional, weight for each value in the input tensor.
Should be of same size as input tensor.
minlength (int): optional, minimum number of bins. Should be non-negative.
Returns:
output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if
:attr:`input` is non-empty, else ``Size(0)``
Example::
>>> input = torch.randint(0, 8, (5,), dtype=torch.int64)
>>> weights = torch.linspace(0, 1, steps=5)
>>> input, weights
(tensor([4, 3, 6, 3, 4]),
tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
>>> torch.bincount(input)
tensor([0, 0, 0, 2, 2, 0, 1])
>>> input.bincount(weights)
tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])
""")
add_docstr(torch.bitwise_not,
r"""
bitwise_not(input, out=None) -> Tensor
Computes the bitwise NOT of the given input tensor. The input tensor must be of
integral or Boolean types. For bool tensors, it computes the logical NOT.
Args:
{input}
{out}
Example:
>>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8))
tensor([ 0, 1, -4], dtype=torch.int8)
""".format(**common_args))
add_docstr(torch.bmm,
r"""
bmm(input, mat2, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored in :attr:`input`
and :attr:`mat2`.
:attr:`input` and :attr:`mat2` must be 3-D tensors each containing
the same number of matrices.
If :attr:`input` is a :math:`(b \times n \times m)` tensor, :attr:`mat2` is a
:math:`(b \times m \times p)` tensor, :attr:`out` will be a
:math:`(b \times n \times p)` tensor.
.. math::
\text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i
""" + r"""
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
For broadcasting matrix products, see :func:`torch.matmul`.
Args:
input (Tensor): the first batch of matrices to be multiplied
mat2 (Tensor): the second batch of matrices to be multiplied
{out}
Example::
>>> input = torch.randn(10, 3, 4)
>>> mat2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(input, mat2)
>>> res.size()
torch.Size([10, 3, 5])
""".format(**common_args))
add_docstr(torch.stack,
r"""
stack(tensors, dim=0, out=None) -> Tensor
Concatenates sequence of tensors along a new dimension.
All tensors need to be of the same size.
Arguments:
tensors (sequence of Tensors): sequence of tensors to concatenate
dim (int): dimension to insert. Has to be between 0 and the number
of dimensions of concatenated tensors (inclusive)
{out}
""".format(**common_args))
add_docstr(torch.chunk,
r"""
chunk(input, chunks, dim=0) -> List of Tensors
Splits a tensor into a specific number of chunks.
Last chunk will be smaller if the tensor size along the given dimension
:attr:`dim` is not divisible by :attr:`chunks`.
Arguments:
input (Tensor): the tensor to split
chunks (int): number of chunks to return
dim (int): dimension along which to split the tensor
""")
add_docstr(torch.cat,
r"""
cat(tensors, dim=0, out=None) -> Tensor
Concatenates the given sequence of :attr:`seq` tensors in the given dimension.
All tensors must either have the same shape (except in the concatenating
dimension) or be empty.
:func:`torch.cat` can be seen as an inverse operation for :func:`torch.split`
and :func:`torch.chunk`.
:func:`torch.cat` can be best understood via examples.
Args:
tensors (sequence of Tensors): any python sequence of tensors of the same type.
Non-empty tensors provided must have the same shape, except in the
cat dimension.
dim (int, optional): the dimension over which the tensors are concatenated
{out}
Example::
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497]])
>>> torch.cat((x, x, x), 0)
tensor([[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497],
[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497],
[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497]])
>>> torch.cat((x, x, x), 1)
tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580,
-1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034,
-0.5790, 0.1497]])
""".format(**common_args))
add_docstr(torch.cdist,
r"""
cdist(x1, x2, p=2) -> Tensor
Computes the p-norm distance between each pair of the two collections of row vectors.
If x1 has shape :math:`P \times M` and x2 has shape :math:`R \times M` then the
output will have shape :math:`P \times R`.
This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)`
if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to
`scipy.spatial.distance.cdist(input, 'hamming') * M`. When :math:`p = \infty`, the closest
scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`.
Args:
x1 (Tensor): input tensor of shape :math:`P \times M`.
x2 (Tensor): input tensor of shape :math:`R \times M`.
p: p value for the p-norm distance to calculate between each vector pair
:math:`\in [0, \infty]`.
Example::
>>> a = torch.tensor([[0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.059]])
>>> a
tensor([[ 0.9041, 0.0196],
[-0.3108, -2.4423],
[-0.4821, 1.0590]])
>>> b = torch.tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]])
>>> b
tensor([[-2.1763, -0.4713],
[-0.6986, 1.3702]])
>>> torch.cdist(a, b, p=2)
tensor([[3.1193, 2.0959],
[2.7138, 3.8322],
[2.2830, 0.3791]])
""".format(**common_args))
add_docstr(torch.ceil,
r"""
ceil(input, out=None) -> Tensor
Returns a new tensor with the ceil of the elements of :attr:`input`,
the smallest integer greater than or equal to each element.
.. math::
\text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1
""" + r"""
Args:
{input}
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.6341, -1.4208, -1.0900, 0.5826])
>>> torch.ceil(a)
tensor([-0., -1., -1., 1.])
""".format(**common_args))
add_docstr(torch.reciprocal,
r"""
reciprocal(input, out=None) -> Tensor
Returns a new tensor with the reciprocal of the elements of :attr:`input`
.. math::
\text{out}_{i} = \frac{1}{\text{input}_{i}}
""" + r"""
Args:
{input}
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.4595, -2.1219, -1.4314, 0.7298])
>>> torch.reciprocal(a)
tensor([-2.1763, -0.4713, -0.6986, 1.3702])
""".format(**common_args))
add_docstr(torch.cholesky, r"""
cholesky(input, upper=False, out=None) -> Tensor
Computes the Cholesky decomposition of a symmetric positive-definite
matrix :math:`A` or for batches of symmetric positive-definite matrices.
If :attr:`upper` is ``True``, the returned matrix ``U`` is upper-triangular, and
the decomposition has the form:
.. math::
A = U^TU
If :attr:`upper` is ``False``, the returned matrix ``L`` is lower-triangular, and
the decomposition has the form:
.. math::
A = LL^T
If :attr:`upper` is ``True``, and :math:`A` is a batch of symmetric positive-definite
matrices, then the returned tensor will be composed of upper-triangular Cholesky factors
of each of the individual matrices. Similarly, when :attr:`upper` is ``False``, the returned
tensor will be composed of lower-triangular Cholesky factors of each of the individual
matrices.
Args:
input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)` where `*` is zero or more
batch dimensions consisting of symmetric positive-definite matrices.
upper (bool, optional): flag that indicates whether to return a
upper or lower triangular matrix. Default: ``False``
out (Tensor, optional): the output matrix
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive-definite
>>> l = torch.cholesky(a)
>>> a
tensor([[ 2.4112, -0.7486, 1.4551],
[-0.7486, 1.3544, 0.1294],
[ 1.4551, 0.1294, 1.6724]])
>>> l
tensor([[ 1.5528, 0.0000, 0.0000],
[-0.4821, 1.0592, 0.0000],
[ 0.9371, 0.5487, 0.7023]])