-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_itm_hard_negatives.py
454 lines (401 loc) · 20.5 KB
/
train_itm_hard_negatives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
UNITER finetuning for Image-Text Retrieval with hard negatives
"""
import argparse
import os
from os.path import exists, join
from time import time
import torch
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader, ConcatDataset
from apex import amp
from horovod import torch as hvd
from tqdm import tqdm
from data import (PrefetchLoader, TxtTokLmdb, ImageLmdbGroup,
ItmRankDatasetHardNegFromText,
ItmRankDatasetHardNegFromImage, itm_rank_hn_collate,
ItmValDataset, itm_val_collate,
ItmEvalDataset, itm_eval_collate)
from model.itm import UniterForImageTextRetrievalHardNeg
from optim import get_lr_sched
from optim.misc import build_optimizer
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
broadcast_tensors)
from utils.save import ModelSaver, save_training_meta
from utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
from utils.const import IMG_DIM
from utils.itm_eval import evaluate
from utils.training_signal_annealing import get_tsa_threshold
def build_dataloader(dataset, collate_fn, is_train, opts):
dataloader = DataLoader(dataset, batch_size=1,
shuffle=is_train, drop_last=is_train,
num_workers=opts.n_workers,
pin_memory=opts.pin_mem, collate_fn=collate_fn)
dataloader = PrefetchLoader(dataloader)
return dataloader
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
opts.rank = rank
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
set_random_seed(opts.seed)
if hvd.rank() == 0:
save_training_meta(opts)
TB_LOGGER.create(join(opts.output_dir, 'log'))
pbar = tqdm(total=opts.num_train_steps)
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
# store ITM predictions
os.makedirs(join(opts.output_dir, 'results_val'))
os.makedirs(join(opts.output_dir, 'results_test'))
os.makedirs(join(opts.output_dir, 'results_train'))
else:
LOGGER.disabled = True
pbar = NoOp()
model_saver = NoOp()
# train_examples = None
LOGGER.info(f"Loading Train Dataset {opts.train_txt_dbs}, "
f"{opts.train_img_dbs}")
# check multiple DBs
assert len(opts.train_txt_dbs) == len(opts.train_img_dbs), \
"train txt_db and img_db have different length"
# load DBs and image dirs
all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb,
opts.num_bb, opts.compressed_db)
# train
LOGGER.info(f"Loading Train Dataset "
f"{opts.train_txt_dbs}, {opts.train_img_dbs}")
train_datasets_t = []
train_datasets_i = []
for txt_path, img_path in zip(opts.train_txt_dbs, opts.train_img_dbs):
img_db = all_img_dbs[img_path]
txt_db = TxtTokLmdb(txt_path, opts.max_txt_len)
train_datasets_t.append(ItmRankDatasetHardNegFromText(txt_db, img_db, opts.negative_size, IAIS=opts.IAIS))
train_datasets_i.append(ItmRankDatasetHardNegFromImage(txt_db, img_db, opts.negative_size, IAIS=opts.IAIS))
train_dataset_t = ConcatDataset(train_datasets_t)
train_dataset_i = ConcatDataset(train_datasets_i)
train_dataloader_t = build_dataloader(train_dataset_t, itm_rank_hn_collate, True, opts)
train_dataloader_i = build_dataloader(train_dataset_i, itm_rank_hn_collate, True, opts)
# val
LOGGER.info(f"Loading Val Dataset {opts.val_txt_db}, {opts.val_img_db}")
val_img_db = all_img_dbs[opts.val_img_db]
val_txt_db = TxtTokLmdb(opts.val_txt_db, -1)
val_dataset = ItmValDataset(val_txt_db, val_img_db, opts.inf_minibatch_size)
val_dataloader = build_dataloader(val_dataset, itm_val_collate, False, opts)
# eval
LOGGER.info(f"Loading val, test Dataset for full evaluation: "
f"{opts.val_txt_db}, {opts.val_img_db}"
f"{opts.test_txt_db}, {opts.test_img_db}")
eval_dataset_val = ItmEvalDataset(val_txt_db, val_img_db, opts.inf_minibatch_size)
eval_loader_val = build_dataloader(eval_dataset_val, itm_eval_collate, False, opts)
test_img_db = all_img_dbs[opts.test_img_db]
test_txt_db = TxtTokLmdb(opts.test_txt_db, -1)
eval_dataset_test = ItmEvalDataset(test_txt_db, test_img_db, opts.inf_minibatch_size)
eval_loader_test = build_dataloader(eval_dataset_test, itm_eval_collate, False, opts)
# Prepare model
if opts.checkpoint:
checkpoint = torch.load(opts.checkpoint)
else:
checkpoint = {}
model = UniterForImageTextRetrievalHardNeg.from_pretrained(
opts.model_config, state_dict=checkpoint,
img_dim=IMG_DIM, margin=opts.margin, hard_size=opts.hard_neg_size)
model.init_output() # pretrain ITM head is different from ranking head
model.to(device)
# make sure every process has same model parameters in the beginning
broadcast_tensors([p.data for p in model.parameters()], 0)
set_dropout(model, opts.dropout)
# Prepare optimizer
optimizer = build_optimizer(model, opts)
model, optimizer = amp.initialize(model, optimizer, enabled=opts.fp16, opt_level='O2')
LOGGER.info(f"***** Running training on {n_gpu} GPUs *****")
LOGGER.info(" Num examples = %d",
sum(all_gather_list(len(train_dataset_t))))
LOGGER.info(" Batch size = %d", opts.train_batch_size)
LOGGER.info(" Num steps = %d", opts.num_train_steps)
running_loss = RunningMeter('loss')
if opts.IAIS:
ranking_loss = RunningMeter('rank_loss')
model.train()
global_step = 0
step = 0
n_examples = 0
n_hard_ex = 0
start = time()
train_iter_i = iter(train_dataloader_i)
# quick hack for amp delay_unscale bug
optimizer.zero_grad()
optimizer.step()
while True:
for batch in train_dataloader_t:
# hard text from image
try:
batch_i = next(train_iter_i)
except StopIteration:
train_iter_i = iter(train_dataloader_i)
batch_i = next(train_iter_i)
n_examples += batch_i['attn_masks'].size(0) # 400
if opts.IAIS:
rank_loss, self_attn_loss_per_layer = model(batch_i, sample_from='i', compute_loss=True,
IAIS='V-%s' % opts.IAIS) # Interval training for linguistic and visual modality
rank_loss = rank_loss.mean() / opts.train_batch_size
self_attn_tsa_loss = self_attn_loss_per_layer['self_attn_loss'] * get_tsa_threshold('exp_schedule',
global_step,
opts.num_train_steps)
self_attn_loss_per_layer['self_attn_loss_tsa'] = self_attn_tsa_loss
ranking_loss(rank_loss.item())
loss = rank_loss + self_attn_tsa_loss
else:
loss = model(batch_i, sample_from='i', compute_loss=True, IAIS=opts.IAIS)
loss = loss.mean() / opts.train_batch_size
n_hard_ex += loss.numel() # 31
with amp.scale_loss(loss, optimizer, delay_unscale=True) as scaled_loss:
scaled_loss.backward()
# hard image from text
n_examples += batch['attn_masks'].size(0) # 400
if opts.IAIS:
rank_loss, self_attn_loss_per_layer = model(batch, sample_from='t', compute_loss=True,
IAIS='L-%s' % opts.IAIS) # Interval training for linguistic and visual modality
rank_loss = rank_loss.mean() / opts.train_batch_size
self_attn_tsa_loss = self_attn_loss_per_layer['self_attn_loss'] * get_tsa_threshold('exp_schedule',
global_step,
opts.num_train_steps)
self_attn_loss_per_layer['self_attn_loss_tsa'] = self_attn_tsa_loss
ranking_loss(rank_loss.item())
loss = rank_loss + self_attn_tsa_loss
else:
loss = model(batch, sample_from='t', compute_loss=True, IAIS=opts.IAIS)
loss = loss.mean() / opts.train_batch_size
n_hard_ex += loss.numel() # 62
# NOTE we use gradient accumulation to implemented train_batch_size
step += 1
delay_unscale = step % opts.train_batch_size != 0
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale) as scaled_loss:
scaled_loss.backward()
if not delay_unscale:
# gather gradients from every processes
# do this before unscaling to make sure every process uses
# the same gradient scale
grads = [p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None]
all_reduce_and_rescale_tensors(grads, float(1))
running_loss(loss.item())
if step % opts.train_batch_size == 0:
global_step += 1
# learning rate scheduling
lr_this_step = get_lr_sched(global_step, opts)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
# log loss
# NOTE: not gathered across GPUs for efficiency
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
if opts.IAIS:
TB_LOGGER.log_scaler_dict(self_attn_loss_per_layer)
TB_LOGGER.add_scalar('rank_loss', ranking_loss.val, global_step)
TB_LOGGER.step()
# update model params
if opts.grad_norm != -1:
grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm)
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
optimizer.step()
optimizer.zero_grad()
pbar.update(1)
if global_step % 100 == 0:
# monitor training throughput
LOGGER.info(f'------------Step {global_step}-------------')
tot_ex = sum(all_gather_list(n_examples))
ex_per_sec = int(tot_ex / (time() - start))
tot_hn = sum(all_gather_list(n_hard_ex))
hn_per_sec = int(tot_hn / (time() - start))
LOGGER.info(f'{tot_ex} ({tot_hn}) examples (hard) '
f'trained at {ex_per_sec} ({hn_per_sec}) ex/s')
TB_LOGGER.add_scalar('perf/ex_per_s', ex_per_sec, global_step)
TB_LOGGER.add_scalar('perf/hn_per_s', hn_per_sec, global_step)
LOGGER.info(f'-------------------------------------------')
if global_step % opts.valid_steps == 0:
if opts.full_val:
LOGGER.info(
f"========================== Step {global_step} "
f"==========================")
val_log = evaluate(model, eval_loader_val)
TB_LOGGER.log_scaler_dict(
{f"valid/{k}": v for k, v in val_log.items()})
if hvd.rank() == 0:
LOGGER.info(f"image retrieval R1: "
f"{val_log['img_r1'] * 100:.2f},\n"
f"image retrieval R5: "
f"{val_log['img_r5'] * 100:.2f},\n"
f"image retrieval R10: "
f"{val_log['img_r10'] * 100:.2f}\n"
f"text retrieval R1: "
f"{val_log['txt_r1'] * 100:.2f},\n"
f"text retrieval R5: "
f"{val_log['txt_r5'] * 100:.2f},\n"
f"text retrieval R10: "
f"{val_log['txt_r10'] * 100:.2f}")
LOGGER.info("================================="
"=================================")
else:
val_log = validate(model, val_dataloader)
TB_LOGGER.log_scaler_dict(val_log)
model_saver.save(model, global_step)
if global_step >= opts.num_train_steps:
break
if global_step >= opts.num_train_steps:
break
pbar.close()
# final validation
val_log = validate(model, val_dataloader)
TB_LOGGER.log_scaler_dict(val_log)
model_saver.save(model, f'{global_step}_final')
# evaluation
for split, loader in [('test', eval_loader_test)]:
eval_log = evaluate(model, loader)
TB_LOGGER.log_scaler_dict({f"eval/{split}_{k}": v
for k, v in eval_log.items()})
if hvd.rank() != 0:
continue
LOGGER.info(
f"========================= {split} ===========================\n"
f"image retrieval R1: {eval_log['img_r1'] * 100:.2f},\n"
f"image retrieval R5: {eval_log['img_r5'] * 100:.2f},\n"
f"image retrieval R10: {eval_log['img_r10'] * 100:.2f}\n"
f"text retrieval R1: {eval_log['txt_r1'] * 100:.2f},\n"
f"text retrieval R5: {eval_log['txt_r5'] * 100:.2f},\n"
f"text retrieval R10: {eval_log['txt_r10'] * 100:.2f}")
LOGGER.info("=========================================================")
@torch.no_grad()
def validate(model, val_loader):
if hvd.rank() == 0:
pbar = tqdm(total=len(val_loader))
else:
pbar = NoOp()
LOGGER.info("start running Image Retrieval validation ...")
model.eval()
n_ex = 0
st = time()
recall_at_1, recall_at_5, recall_at_10 = 0, 0, 0
for batch in val_loader:
scores = model(batch, compute_loss=False)
_, indices = scores.squeeze(1).topk(10, dim=0)
rank = (indices == 0).nonzero()
if rank.numel():
rank = rank.item()
if rank < 1:
recall_at_1 += 1
if rank < 5:
recall_at_5 += 1
if rank < 10:
recall_at_10 += 1
n_ex += 1
pbar.update(1)
n_ex = sum(all_gather_list(n_ex))
recall_at_1 = sum(all_gather_list(recall_at_1)) / n_ex
recall_at_5 = sum(all_gather_list(recall_at_5)) / n_ex
recall_at_10 = sum(all_gather_list(recall_at_10)) / n_ex
tot_time = time() - st
val_log = {'valid/ex_per_s': n_ex / tot_time,
'valid/recall_1': recall_at_1,
'valid/recall_5': recall_at_5,
'valid/recall_10': recall_at_10}
model.train()
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
f"recall_1: {recall_at_1 * 100:.2f}, "
f"recall_5: {recall_at_5 * 100:.2f}, "
f"recall_10: {recall_at_10 * 100:.2f}")
pbar.close()
return val_log
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--compressed_db', action='store_true',
help='use compressed LMDB')
parser.add_argument("--checkpoint",
default=None, type=str,
help="pretrained MLM")
parser.add_argument("--output_dir", default=None, type=str,
help="The output directory where the model "
"checkpoints will be written.")
# Prepro parameters
parser.add_argument('--max_txt_len', type=int, default=60,
help='max number of tokens in text (BERT BPE)')
parser.add_argument('--conf_th', type=float, default=0.2,
help='threshold for dynamic bounding boxes '
'(-1 for fixed)')
parser.add_argument('--max_bb', type=int, default=100,
help='max number of bounding boxes')
parser.add_argument('--min_bb', type=int, default=10,
help='min number of bounding boxes')
parser.add_argument('--num_bb', type=int, default=36,
help='static number of bounding boxes')
# training parameters
parser.add_argument("--train_batch_size", default=32, type=int,
help="batch size (# positive examples) for training. "
"(implemented with gradient accumulation)")
parser.add_argument("--negative_size", default=511, type=int,
help="Number of negative samples per positive sample"
"(forward only)")
parser.add_argument("--hard_neg_size", default=31, type=int,
help="Number of hard negative samples "
"per positive sample (acutally used to train)")
parser.add_argument("--inf_minibatch_size", default=512, type=int,
help="batch size for running inference. "
"(used for validation and evaluation)")
parser.add_argument("--margin", default=0.2, type=float,
help="margin of ranking loss")
parser.add_argument("--learning_rate", default=3e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--valid_steps", default=1000, type=int,
help="Run validation every X steps")
parser.add_argument("--num_train_steps", default=100000, type=int,
help="Total number of training updates to perform.")
parser.add_argument("--optim", default='adam',
choices=['adam', 'adamax', 'adamw'],
help="optimizer")
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+',
help="beta for adam optimizer")
parser.add_argument("--dropout", default=0.1, type=float,
help="tune dropout regularization")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="weight decay (L2) regularization")
parser.add_argument("--grad_norm", default=0.25, type=float,
help="gradient clipping (-1 for no clipping)")
parser.add_argument("--warmup_steps", default=4000, type=int,
help="Number of training steps to perform linear "
"learning rate warmup for.")
# device parameters
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--full_val', action='store_true',
help="Always run full evaluation during training")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
# can use config files
parser.add_argument('--config', help='JSON config files')
parser.add_argument('--IAIS', default=False, choices=['distributed', 'singular', False],
help='msa regularizer')
args = parse_with_config(parser)
if exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not "
"empty.".format(args.output_dir))
# options safe guard
if args.conf_th == -1:
assert args.max_bb + args.max_txt_len + 2 <= 512
else:
assert args.num_bb + args.max_txt_len + 2 <= 512
# for tensor core
assert (args.negative_size + 1) % 8 == (args.hard_neg_size + 1) % 8 == 0
main(args)