-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpacker.py
136 lines (114 loc) · 4.6 KB
/
packer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import csv
import json
import random
from typing import List
from tqdm import tqdm
from transformers import AutoTokenizer
from enum import StrEnum
class AlgoEnum(StrEnum):
PACK_MAX = "pack_max"
RANDOM_20 = "random_20"
def preprocess_dataset(
input_file: str,
output_file: str,
token_limit: int,
model_name: str,
algo: AlgoEnum = AlgoEnum.PACK_MAX,
separator: str = ", ",
) -> None:
"""
Preprocesses the dataset by grouping consecutive records into instructions under the specified token limit.
Args:
input_file (str): Path to the input CSV file.
output_file (str): Path to the output jsonlines file to save the preprocessed data.
token_limit (int): Maximum token limit for each instruction.
model_name (str): Name of the pretrained model.
Returns:
None
"""
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
model_max_length=1024,
use_fast=False,
padding_side="right",
add_eos_token=False,
add_bos_token=False,
)
tokenizer.pad_token = tokenizer.eos_token
inst_token_count = len(tokenizer("[INST]").input_ids)
end_inst_token_count = len(tokenizer("[/INST]").input_ids)
comma_token_count = len(tokenizer(separator.strip()).input_ids)
current_instruction_tokens = (
inst_token_count + end_inst_token_count - 2 * comma_token_count
)
current_instruction_translits = []
current_instruction_names = []
def instruction_template(translits: List[str], names: List[str]) -> str:
return f"[INST]{separator.join(translits)}[/INST] {separator.join(names)}"
def write_instruction(fp, translits: List[str], names: List[str]) -> None:
fp.write(
json.dumps(
{"instruction": instruction_template(translits, names)},
ensure_ascii=False,
)
+ "\n"
)
# Load data and shuffle
with open(input_file, encoding="utf-8") as csvfile:
reader = list(csv.DictReader(csvfile))
random.seed(42)
random.shuffle(reader)
next_batch = 1000 # Whatever, any big number in fact
if algo == AlgoEnum.RANDOM_20:
next_batch = random.randrange(1, 21)
with open(output_file, "w", encoding="utf-8") as fp_out:
for row in tqdm(reader):
# Calculate token count for the current row
row_tokens = (
len(tokenizer(row["name"]).input_ids)
+ len(tokenizer(row["translit"]).input_ids)
+ comma_token_count * 2
)
start_new = current_instruction_tokens + row_tokens > token_limit
if algo == AlgoEnum.RANDOM_20:
start_new = start_new or len(current_instruction_translits) >= next_batch
# If adding the current row exceeds the token limit, start a new instruction
if start_new:
write_instruction(
fp_out, current_instruction_translits, current_instruction_names
)
# Reset current instruction
current_instruction_tokens = (
inst_token_count + end_inst_token_count - 2 * comma_token_count
)
current_instruction_translits = []
current_instruction_names = []
if algo == AlgoEnum.RANDOM_20:
next_batch = random.randrange(1, 21)
# Add row to current instruction
current_instruction_translits.append(row["translit"])
current_instruction_names.append(row["name"])
current_instruction_tokens += row_tokens
# Append the last instruction
if current_instruction_translits:
write_instruction(
fp_out, current_instruction_translits, current_instruction_names
)
# # Calculate and verify total token count
# total_tokens = sum(
# tokenizer(inst["instruction"], return_tensors="pt").input_ids.numel()
# for inst in instructions
# )
# assert (
# total_tokens <= token_limit
# ), f"Total tokens ({total_tokens}) exceed token limit ({token_limit})"
if __name__ == "__main__":
preprocess_dataset(
input_file="data/translit_names_filtered.csv",
output_file="preprocessed_dataset_mistral_random.jsonl",
token_limit=500,
algo=AlgoEnum.RANDOM_20,
# model_name="Unbabel/TowerBase-7B-v0.1",
model_name="mistralai/Mistral-7B-v0.1",
)