-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtest_ops.py
105 lines (86 loc) · 2.97 KB
/
test_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import torch.nn as nn
from torch.nn.modules.utils import _single, _pair, _triple
from torch.autograd import Variable
from utils.gradcheck import gradcheck
from models.ops.depthconv.functions.depthconv import DepthconvFunction
N, inC, inH, inW = 4, 2, 8, 8
kH, kW = 3, 3
pad, stride, dilation = 0, 1, 1
offC = 1 * 2 * kH * kW
outC = 1
outH = (inH + 2 * pad - (dilation * (kH - 1) + 1)) // stride + 1
outW = (inW + 2 * pad - (dilation * (kW - 1) + 1)) // stride + 1
conv_offset2d = DepthconvFunction(
padding=(pad, pad),
stride=(stride, stride),
dilation=(dilation, dilation), bias=True)
conv2d = F.ConvNd(_pair(stride), _pair(pad), _pair(dilation), False,
_pair(0), 1, torch.backends.cudnn.benchmark, torch.backends.cudnn.enabled)
offset = Variable(
torch.ones(N, 1, inH, inW).cuda(),
requires_grad=False)
input = Variable(
torch.rand(N, inC, inH, inW).cuda(),
requires_grad=True)
input2 = Variable(input.data.clone(),
requires_grad=True)
weight = Variable(
10*torch.rand(outC, inC, kH, kW).cuda(),
requires_grad=True)
weight2 = Variable(weight.data.clone(),
requires_grad=True)
bias = Variable(torch.rand(outC).cuda(),requires_grad=True)
bias2 = Variable(bias.data.clone(),
requires_grad=True)
grad = Variable(
torch.rand(N, outC, 6, 6).cuda(),
requires_grad=True)
print bias
out1 = conv_offset2d(input, offset, weight, bias)
out2 = conv2d(input2, weight2, bias2)
print (out1-out2).sum()
out1.backward(grad)
out2.backward(grad)
print (weight.grad-weight2.grad).sum()
print ('input.grad',input.grad.sum())
print ('input.grad',input2.grad.sum())
print (input.grad-input2.grad).sum()
print (bias.grad-bias2.grad).sum()
# print bias.data.cpu().numpy().dtype
# print("pass gradcheck: {}".format(gradcheck(conv_offset2d, (input, offset, weight, bias))))
# print("pass gradcheck: {}".format(gradcheck(conv2d, (input, weight,None))))
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from models.ops.depthavgpooling.functions.depthavgpooling import DepthavgpoolingFunction
from models.ops.depthavgpooling.modules import Depthavgpooling
from torch.autograd import Variable
depth = [[[1,0,1,10000],
[0,1,10000,1],
[1,0,1,0],
[0,1,0,1]],
]
depth = np.zeros([40,40])
inputarray = torch.Tensor(np.asarray(range(2*40*40)).reshape([1,2,40,40]))
depth = torch.Tensor(np.asarray(depth).reshape([1,1,40,40]))
print inputarray
N, inC, inH, inW = 4, 512, 50, 65
input = Variable(
inputarray,
requires_grad=True).cuda()
depth = Variable(
depth,
requires_grad=True).cuda()
kH, kW = 3, 3
pad, stride, dilation = 1, 1, 1
depthpooling = Depthavgpooling(kH,stride,pad)
pooling = nn.AvgPool2d(kernel_size=kH, stride=stride,padding=pad)
out1 = depthpooling(input, depth)
out2 = pooling(input)
grad = Variable(
torch.ones(N, 2, 40, 40).cuda(),
requires_grad=True)
out1.backward(grad)
print out1-out2