-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfibonacci_partial_sum.c
172 lines (157 loc) · 4.55 KB
/
fibonacci_partial_sum.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
* Author: Leandro Augusto Lacerda Campos <[email protected]>
*
* Data Structures and Algorithms Specialization,
* by University of California, San Diego,
* and National Research University Higher School of Economics
*
* Course 1: Algorithmic Toolbox
*
* Solution for Last Digit of the Partial Sum of Fibonacci Numbers Problem
*/
#include <stdio.h>
#include <math.h>
#define MODULE_MIN 2
#define MODULE_MAX 10
#define FIRST_PISANO_PERIODS_SIZE 10
#define FIB_TABLE_SIZE (2 * 6 * MODULE_MAX)
unsigned short first_pisano_periods[] = {1, 3, 8, 6, 20, 24, 16, 12, 24, 60};
unsigned short fib_table[FIB_TABLE_SIZE] = {0, 1};
unsigned short fib_table_idx = 1;
unsigned short fib_table_module = 0;
unsigned char fib_partial_sum_last_digit(unsigned long long, unsigned long long);
unsigned char fib_sum_last_digit(unsigned long long);
unsigned short fib_module(unsigned short, unsigned short);
unsigned short pisano_period(unsigned short);
unsigned short fibonacci_huge_naive(unsigned long long, unsigned short);
int main()
{
unsigned long long start, end;
scanf("%llu %llu", &start, &end);
printf("%hhu\n", fib_partial_sum_last_digit(start, end));
return 0;
}
// fib_partial_sum_last_digit: calculate the last digit of a partial sum of Fibonacci numbers:
// f(m) + f(m+1) + ... + f(n), where 0 <= m <= n <= 10^18.
unsigned char fib_partial_sum_last_digit(unsigned long long start, unsigned long long end)
{
unsigned short m, p;
unsigned char sum_start, sum_end;
m = 10; // module base to obtain the last digit
p = pisano_period(m);
sum_start = fib_sum_last_digit(start);
sum_end = fib_sum_last_digit(end);
return ((10 + sum_end) - sum_start + fib_module(start % p, m)) % m;
}
// fib_sum_last_digit: calculate the last digit of a sum of Fibonacci numbers:
// f(0) + f(1) + ... + f(n), where 0 <= n <= 10^18.
unsigned char fib_sum_last_digit(unsigned long long n)
{
unsigned char sum;
unsigned short i, m, p, r;
unsigned long long q;
m = 10; // module base to obtain the last digit
p = pisano_period(m);
q = n / p;
r = n % p;
sum = 0;
if (q > 0)
for (i = 0; i <= p; i++)
sum = (sum + fib_module(i, m)) % m;
sum = (sum * q) % m;
if (r > 0)
for (i = 0; i <= r; i++)
sum = (sum + fib_module(i, m)) % m;
return sum;
}
// fib_module: calculate fib(n) mod m, where fib(n) is the nth
// fibonnaci number, 1 <= n <= 10^18 and 2 <= m <= 10^3.
unsigned short fib_module(unsigned short n, unsigned short m)
{
unsigned short fib_value;
if (n >= FIB_TABLE_SIZE)
{
printf("n is larger than or equals to FIB_TABLE_SIZE\n");
return -1;
}
if (m > MODULE_MAX)
{
printf("m is larger than MODULE_MAX\n");
return -1;
}
if (m < MODULE_MIN)
{
printf("m is smaller than MODULE_MIN\n");
return -1;
}
if (m != fib_table_module)
{
fib_table_idx = 1;
fib_table_module = m;
}
while (fib_table_idx < n)
{
fib_table_idx++;
fib_value = fib_table[fib_table_idx - 1];
fib_value += fib_table[fib_table_idx - 2];
fib_value %= m;
fib_table[fib_table_idx] = fib_value;
}
return fib_table[n];
}
// pisano_period: calculate the nth Pisano period, where
// 2 <= m <= 10^3.
unsigned short pisano_period(unsigned short m)
{
unsigned short i, n, p;
double k;
if (m > MODULE_MAX)
{
printf("m is larger than MODULE_MAX\n");
return -1;
}
if (m < MODULE_MIN)
{
printf("m is smaller than MODULE_MIN\n");
return -1;
}
if (m <= FIRST_PISANO_PERIODS_SIZE)
return first_pisano_periods[m - 1];
n = 4 * m;
if (m % 2 == 0 && m % 5 == 0)
{
k = log(m / 2) / log(5);
if (k - floor(k) == 0)
n = 6 * m;
}
for (p = 2; p < n; p += 2)
{
for (i = 0; i < n; i++)
if (fib_module(i, m) != fib_module(i + p, m))
break;
if (i == n)
break;
}
return p;
}
// fibonacci_huge_naive: calculate fib(n) mod m, where fib(n) is the nth
// fibonnaci number, 1 <= n <= 10^18 and 2 <= m <= 10^3.
unsigned short fibonacci_huge_naive(unsigned long long n, unsigned short m)
{
unsigned short next, current, previous;
if (n < 2)
{
if (n == 0)
return 0;
else
return 1;
}
previous = 0, current = 1;
while (n-- > 2)
{
next = (current + previous) % m;
previous = current;
current = next;
}
return (current + previous) % m;
}