diff --git a/Batteries/Data/Stream.lean b/Batteries/Data/Stream.lean index fb9df787be..c5c67e8f96 100644 --- a/Batteries/Data/Stream.lean +++ b/Batteries/Data/Stream.lean @@ -1,93 +1,3 @@ -/- -Copyright (c) 2024 François G. Dorais. All rights reserved. -Released under Apache 2. license as described in the file LICENSE. -Authors: François G. Dorais --/ - -namespace Stream - -/-- Drop up to `n` values from the stream `s`. -/ -def drop [Stream σ α] (s : σ) : Nat → σ - | 0 => s - | n+1 => - match next? s with - | none => s - | some (_, s) => drop s n - -/-- Read up to `n` values from the stream `s` as a list from first to last. -/ -def take [Stream σ α] (s : σ) : Nat → List α × σ - | 0 => ([], s) - | n+1 => - match next? s with - | none => ([], s) - | some (a, s) => - match take s n with - | (as, s) => (a :: as, s) - -@[simp] theorem fst_take_zero [Stream σ α] (s : σ) : - (take s 0).fst = [] := rfl - -theorem fst_take_succ [Stream σ α] (s : σ) : - (take s (n+1)).fst = match next? s with - | none => [] - | some (a, s) => a :: (take s n).fst := by - simp only [take]; split <;> rfl - -@[simp] theorem snd_take_eq_drop [Stream σ α] (s : σ) (n : Nat) : - (take s n).snd = drop s n := by - induction n generalizing s with - | zero => rfl - | succ n ih => - simp only [take, drop] - split <;> simp [ih] - -/-- Tail recursive version of `Stream.take`. -/ -def takeTR [Stream σ α] (s : σ) (n : Nat) : List α × σ := - loop s [] n -where - /-- Inner loop for `Stream.takeTR`. -/ - loop (s : σ) (acc : List α) - | 0 => (acc.reverse, s) - | n+1 => match next? s with - | none => (acc.reverse, s) - | some (a, s) => loop s (a :: acc) n - -theorem fst_takeTR_loop [Stream σ α] (s : σ) (acc : List α) (n : Nat) : - (takeTR.loop s acc n).fst = acc.reverseAux (take s n).fst := by - induction n generalizing acc s with - | zero => rfl - | succ n ih => simp only [take, takeTR.loop]; split; rfl; simp [ih] - -theorem fst_takeTR [Stream σ α] (s : σ) (n : Nat) : (takeTR s n).fst = (take s n).fst := - fst_takeTR_loop .. - -theorem snd_takeTR_loop [Stream σ α] (s : σ) (acc : List α) (n : Nat) : - (takeTR.loop s acc n).snd = drop s n := by - induction n generalizing acc s with - | zero => rfl - | succ n ih => simp only [takeTR.loop, drop]; split; rfl; simp [ih] - -theorem snd_takeTR [Stream σ α] (s : σ) (n : Nat) : - (takeTR s n).snd = drop s n := snd_takeTR_loop .. - -@[csimp] theorem take_eq_takeTR : @take = @takeTR := by - funext; ext : 1; rw [fst_takeTR]; rw [snd_takeTR, snd_take_eq_drop] - -end Stream - -@[simp] theorem List.stream_drop_eq_drop (l : List α) : Stream.drop l n = l.drop n := by - induction n generalizing l with - | zero => rfl - | succ n ih => - match l with - | [] => rfl - | _::_ => simp [Stream.drop, List.drop_succ_cons, ih] - -@[simp] theorem List.stream_take_eq_take_drop (l : List α) : - Stream.take l n = (l.take n, l.drop n) := by - induction n generalizing l with - | zero => rfl - | succ n ih => - match l with - | [] => rfl - | _::_ => simp [Stream.take, ih] +import Batteries.Data.Stream.Basic +import Batteries.Data.Stream.Fold +import Batteries.Data.Stream.WF diff --git a/Batteries/Data/Stream/Basic.lean b/Batteries/Data/Stream/Basic.lean new file mode 100644 index 0000000000..fb9df787be --- /dev/null +++ b/Batteries/Data/Stream/Basic.lean @@ -0,0 +1,93 @@ +/- +Copyright (c) 2024 François G. Dorais. All rights reserved. +Released under Apache 2. license as described in the file LICENSE. +Authors: François G. Dorais +-/ + +namespace Stream + +/-- Drop up to `n` values from the stream `s`. -/ +def drop [Stream σ α] (s : σ) : Nat → σ + | 0 => s + | n+1 => + match next? s with + | none => s + | some (_, s) => drop s n + +/-- Read up to `n` values from the stream `s` as a list from first to last. -/ +def take [Stream σ α] (s : σ) : Nat → List α × σ + | 0 => ([], s) + | n+1 => + match next? s with + | none => ([], s) + | some (a, s) => + match take s n with + | (as, s) => (a :: as, s) + +@[simp] theorem fst_take_zero [Stream σ α] (s : σ) : + (take s 0).fst = [] := rfl + +theorem fst_take_succ [Stream σ α] (s : σ) : + (take s (n+1)).fst = match next? s with + | none => [] + | some (a, s) => a :: (take s n).fst := by + simp only [take]; split <;> rfl + +@[simp] theorem snd_take_eq_drop [Stream σ α] (s : σ) (n : Nat) : + (take s n).snd = drop s n := by + induction n generalizing s with + | zero => rfl + | succ n ih => + simp only [take, drop] + split <;> simp [ih] + +/-- Tail recursive version of `Stream.take`. -/ +def takeTR [Stream σ α] (s : σ) (n : Nat) : List α × σ := + loop s [] n +where + /-- Inner loop for `Stream.takeTR`. -/ + loop (s : σ) (acc : List α) + | 0 => (acc.reverse, s) + | n+1 => match next? s with + | none => (acc.reverse, s) + | some (a, s) => loop s (a :: acc) n + +theorem fst_takeTR_loop [Stream σ α] (s : σ) (acc : List α) (n : Nat) : + (takeTR.loop s acc n).fst = acc.reverseAux (take s n).fst := by + induction n generalizing acc s with + | zero => rfl + | succ n ih => simp only [take, takeTR.loop]; split; rfl; simp [ih] + +theorem fst_takeTR [Stream σ α] (s : σ) (n : Nat) : (takeTR s n).fst = (take s n).fst := + fst_takeTR_loop .. + +theorem snd_takeTR_loop [Stream σ α] (s : σ) (acc : List α) (n : Nat) : + (takeTR.loop s acc n).snd = drop s n := by + induction n generalizing acc s with + | zero => rfl + | succ n ih => simp only [takeTR.loop, drop]; split; rfl; simp [ih] + +theorem snd_takeTR [Stream σ α] (s : σ) (n : Nat) : + (takeTR s n).snd = drop s n := snd_takeTR_loop .. + +@[csimp] theorem take_eq_takeTR : @take = @takeTR := by + funext; ext : 1; rw [fst_takeTR]; rw [snd_takeTR, snd_take_eq_drop] + +end Stream + +@[simp] theorem List.stream_drop_eq_drop (l : List α) : Stream.drop l n = l.drop n := by + induction n generalizing l with + | zero => rfl + | succ n ih => + match l with + | [] => rfl + | _::_ => simp [Stream.drop, List.drop_succ_cons, ih] + +@[simp] theorem List.stream_take_eq_take_drop (l : List α) : + Stream.take l n = (l.take n, l.drop n) := by + induction n generalizing l with + | zero => rfl + | succ n ih => + match l with + | [] => rfl + | _::_ => simp [Stream.take, ih] diff --git a/Batteries/Data/Stream/Fold.lean b/Batteries/Data/Stream/Fold.lean new file mode 100644 index 0000000000..b1a969d699 --- /dev/null +++ b/Batteries/Data/Stream/Fold.lean @@ -0,0 +1,112 @@ +/- +Copyright (c) 2024 François G. Dorais. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: François G. Dorais +-/ +import Batteries.Data.Stream.WF + +namespace Stream + +/-! ### foldlM -/ + +/-- Folds a monadic function over a well founded stream from left to right. (Tail recursive.) -/ +@[specialize] def foldlM [Monad m] [Stream.WF σ α] (f : β → α → m β) (init : β) (s : σ) : m β := + match _hint : next? s with + | none => pure init + | some (x, t) => f init x >>= (foldlM f · t) +termination_by s + +theorem foldlM_init [Monad m] [Stream.WF σ α] {f : β → α → m β} {init : β} {s : σ} + (h : next? s = none) : foldlM f init s = pure init := by rw [foldlM, h] + +theorem foldlM_next [Monad m] [Stream.WF σ α] {f : β → α → m β} {init : β} {s t : σ} {x} + (h : next? s = some (x, t)) : foldlM f init s = f init x >>= (foldlM f · t) := by rw [foldlM, h] + +theorem foldlM_eq_foldlM_toList [Monad m] [Stream.WF σ α] (f : β → α → m β) (init : β) (s : σ) : + foldlM f init s = (toList s).foldlM f init := by + induction s using Stream.recWF generalizing init with + | init h => simp only [foldlM_init h, toList_init h, List.foldlM_nil] + | next h ih => simp only [foldlM_next h, toList_next h, List.foldlM_cons, ih] + +/-! ### foldl -/ + +/-- Folds a function over a well founded stream from left to right. (Tail recursive.) -/ +@[inline] def foldl [Stream.WF σ α] (f : β → α → β) (init : β) (s : σ) : β := + foldlM (m := Id) f init s + +theorem foldl_init [Stream.WF σ α] {f : β → α → β} {init : β} {s : σ} + (h : next? s = none) : foldl f init s = init := foldlM_init h + +theorem foldl_next [Stream.WF σ α] {f : β → α → β} {init : β} {s t : σ} + (h : next? s = some (x, t)) : foldl f init s = foldl f (f init x) t := foldlM_next h + +theorem foldl_eq_foldl_toList [Stream.WF σ α] (f : β → α → β) (init : β) (s : σ) : + foldl f init s = (toList s).foldl f init := by + induction s using Stream.recWF generalizing init with + | init h => simp only [foldl_init h, toList_init h, List.foldl_nil] + | next h ih => simp only [foldl_next h, toList_next h, List.foldl_cons, ih] + +/-! ### foldrM -/ + +/-- Folds a monadic function over a well founded stream from left to right. -/ +@[specialize] def foldrM [Monad m] [Stream.WF σ α] (f : α → β → m β) (init : β) (s : σ) : m β := + match _hint : next? s with + | none => pure init + | some (x, t) => foldrM f init t >>= f x +termination_by s + +theorem foldrM_init [Monad m] [Stream.WF σ α] {f : α → β → m β} {init : β} {s : σ} + (h : next? s = none) : foldrM f init s = pure init := by rw [foldrM, h] + +theorem foldrM_next [Monad m] [Stream.WF σ α] {f : α → β → m β} {init : β} {s t : σ} + (h : next? s = some (x, t)) : foldrM f init s = foldrM f init t >>= f x := by rw [foldrM, h] + +theorem foldrM_eq_foldrM_toList [Monad m] [LawfulMonad m] [Stream.WF σ α] + (f : α → β → m β) (init : β) (s : σ) : foldrM f init s = (toList s).foldrM f init := by + induction s using Stream.recWF with + | init h => simp only [foldrM_init h, toList_init h, List.foldrM_nil] + | next h ih => simp only [foldrM_next h, toList_next h, List.foldrM_cons, ih] + +/-! ### foldr -/ + +/-- Folds a function over a well founded stream from left to right. -/ +@[inline] def foldr [Stream.WF σ α] (f : α → β → β) (init : β) (s : σ) : β := + foldrM (m := Id) f init s + +theorem foldr_init [Stream.WF σ α] {f : α → β → β} {init : β} {s : σ} + (h : next? s = none) : foldr f init s = init := foldrM_init h + +theorem foldr_next [Stream.WF σ α] {f : α → β → β} {init : β} {s t : σ} + (h : next? s = some (x, t)) : foldr f init s = f x (foldr f init t) := foldrM_next h + +theorem foldr_eq_foldr_toList [Stream.WF σ α] (f : α → β → β) (init : β) (s : σ) : + foldr f init s = (toList s).foldr f init := by + induction s using Stream.recWF with + | init h => rw [foldr_init h, toList_init h, List.foldr_nil] + | next h ih => rw [foldr_next h, toList_next h, List.foldr_cons, ih] + +end Stream + +theorem List.stream_foldlM_eq_foldlM [Monad m] (f : β → α → m β) (init : β) (l : List α) : + Stream.foldlM f init l = l.foldlM f init := by + induction l generalizing init with + | nil => rw [Stream.foldlM_init, foldlM_nil]; rfl + | cons x l ih => rw [Stream.foldlM_next, foldlM_cons]; congr; funext; apply ih; rfl + +theorem List.stream_foldl_eq_foldl (f : β → α → β) (init : β) (l : List α) : + Stream.foldl f init l = l.foldl f init := by + induction l generalizing init with + | nil => rw [Stream.foldl_init, foldl_nil]; rfl + | cons x l ih => rw [Stream.foldl_next, foldl_cons]; congr; funext; apply ih; rfl + +theorem List.stream_foldrM_eq_foldrM [Monad m] [LawfulMonad m] (f : α → β → m β) (init : β) + (l : List α) : Stream.foldrM f init l = l.foldrM f init := by + induction l generalizing init with + | nil => rw [Stream.foldrM_init, foldrM_nil]; rfl + | cons x l ih => rw [Stream.foldrM_next, foldrM_cons]; congr; funext; apply ih; rfl + +theorem List.stream_foldr_eq_foldr (f : α → β → β) (init : β) (l : List α) : + Stream.foldr f init l = l.foldr f init := by + induction l generalizing init with + | nil => rw [Stream.foldr_init, foldr_nil]; rfl + | cons x l ih => rw [Stream.foldr_next, foldr_cons]; congr; funext; apply ih; rfl diff --git a/Batteries/Data/Stream/WF.lean b/Batteries/Data/Stream/WF.lean new file mode 100644 index 0000000000..f026c47b56 --- /dev/null +++ b/Batteries/Data/Stream/WF.lean @@ -0,0 +1,215 @@ +/- +Copyright (c) 2024 François G. Dorais. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: François G. Dorais +-/ + +namespace Stream + +/-- Successor relation on streams. -/ +inductive Next [Stream σ α] : σ → σ → Prop + /-- `Next` constructor. -/ + | next : next? s = some (x, t) → Next t s + +/-- Well founded stream class. -/ +protected class WF (σ : Type _) (α : outParam (Type _)) extends Stream σ α where + /-- Stream is accessible. -/ + acc s : Acc toStream.Next s + +/-- `WellFoundedRelation` instance for well founded streams. -/ +instance (priority := low) (σ α) [Stream.WF σ α] : WellFoundedRelation σ where + wf := .intro Stream.WF.acc + +macro_rules | `(tactic| decreasing_trivial) => `(tactic| apply Stream.Next.next; assumption) + +/-! ### Recursors -/ + +/-- Recursor for well founded stream type. -/ +@[elab_as_elim] def recWF [Stream.WF σ α] {motive : σ → Sort _} + (init : {s : σ} → next? s = none → motive s) + (next : {s t : σ} → {x : α} → next? s = some (x, t) → motive t → motive s) + (s : σ) : motive s := + match h : next? s with + | none => init h + | some (x, t) => next h (recWF init next t) +termination_by s + +/-- Recursor for well founded stream type. -/ +@[elab_as_elim, inline] def recWFOn [Stream.WF σ α] {motive : σ → Sort _} (s : σ) + (init : {s : σ} → next? s = none → motive s) + (next : {s t : σ} → {x : α} → next? s = some (x, t) → motive t → motive s) : motive s := + recWF init next s + +/-- Recursor for well founded stream type. -/ +@[elab_as_elim, inline] def casesWFOn [Stream.WF σ α] {motive : σ → Sort _} (s : σ) + (init : {s : σ} → next? s = none → motive s) + (next : {s t : σ} → {x : α} → next? s = some (x, t) → motive s) : motive s := + recWF init (fun h _ => next h) s + +/-! ### ForIn -/ + +/-- `forIn` implementation for well founded streams. -/ +@[inline] def WF.forIn [Monad m] [Stream.WF σ α] (s : σ) (init : β) (f : α → β → m (ForInStep β)) : + m β := loop init s +where + /-- Inner loop for `WF.forIn` -/ + @[specialize] loop y s := + match _hint : next? s with + | none => return y + | some (x, t) => + f x y >>= fun + | .done y => return y + | .yield y => loop y t +termination_by s + +/-- `ForIn` instance for well founded streams. -/ +instance (priority := low+1) [Stream.WF σ α] : ForIn m σ α where + forIn := WF.forIn + +/-! ### toList -/ + +/-- Extract a list from a well founded stream. -/ +def toList [Stream.WF σ α] (s : σ) : List α := + match _hint : next? s with + | none => [] + | some (x, t) => x :: toList t +termination_by s + +theorem toList_init [Stream.WF σ α] {s : σ} (h : next? s = none) : + toList s = [] := by rw [toList, h] + +theorem toList_next [Stream.WF σ α] {s t : σ} (h : next? s = some (x, t)) : + toList s = x :: toList t := by rw [toList, h] + +/-- Tail recursive implementation of `Stream.toList`. -/ +private def toListTR [Stream.WF σ α] (s : σ) : List α := + loop [] s +where + loop l s := + match _hint : next? s with + | none => l.reverse + | some (x, t) => loop (x :: l) t +termination_by s + +private theorem toListTR_loop [Stream.WF σ α] (s : σ) (l : List α) : + toListTR.loop l s = l.reverse ++ toList s := by + induction s using Stream.recWF generalizing l with rw [toListTR.loop, h] + | init h => simp [toList_init h] + | next h ih => simp [toList_next h, ih] + +@[csimp] private theorem toList_eq_toListTR : @toList = @toListTR := by + funext; simp [toListTR, toListTR_loop] + +/-! ### Basic instances -/ + +/-- Well founded stream from a well founded relation. -/ +def WF.ofSubrelation [Stream σ α] (wf : WellFoundedRelation σ) + (h : ∀ {s t}, Next s t → wf.rel s t) : Stream.WF σ α where + acc s := Subrelation.accessible h (wf.wf.apply s) + +/-- Well founded stream from a measure. -/ +def WF.ofMeasure [Stream σ α] (m : σ → Nat) (h : ∀ {s t}, Next s t → m s < m t) : Stream.WF σ α := + WF.ofSubrelation (measure m) h + +/-- Bounded stream type. -/ +structure Bounded (σ : Type _) [Stream σ α] where + /-- Underlying stream of a bounded stream. -/ + stream : σ + /-- Fuel of a bounded stream. -/ + fuel : Nat + +/-- Stream instance for bounded streams. -/ +local instance (σ α) [Stream σ α] : Stream (Bounded σ) α where + next? + | ⟨_, 0⟩ => none + | ⟨s, n+1⟩ => + match next? s with + | none => none + | some ⟨x, s⟩ => some ⟨x, s, n⟩ + +/-- Well founded stream instance for bounded streams. -/ +instance (σ α) [Stream σ α] : Stream.WF (Bounded σ) α := WF.ofMeasure Bounded.fuel <| by + intro _ _ h + cases h with + | next h => + simp [next?] at h + split at h + · contradiction + · split at h + · contradiction + · cases h; simp + +/-- Well founded stream instance for `List`. -/ +instance (α) : Stream.WF (List α) α := WF.ofSubrelation inferInstance <| by + intro _ _ h + cases h with + | next h => + simp only [next?] at h + split at h + · contradiction + · injections; decreasing_tactic + +/-- Well founded stream instance for `Substring`. -/ +instance : Stream.WF Substring Char := WF.ofMeasure Substring.bsize <| by + intro _ t h + cases h with + | next h => + simp [next?] at h + match h with + | ⟨_, _, h⟩ => + have := String.lt_next t.str t.startPos + simp only [Substring.bsize, ← h, Nat.sub_eq, gt_iff_lt] + omega + +/-- Stream instance for `String.Iterator`. -/ +local instance : Stream String.Iterator Char where + next? s := + if h : s.hasNext then + some (s.curr' h, s.next' h) + else + none + +/-- Well founded stream instance for `String.Iterator`. -/ +instance : Stream.WF String.Iterator Char := + WF.ofMeasure (fun s => s.s.endPos.byteIdx - s.i.byteIdx) <| by + intro _ t h + cases h with + | next h => + simp [next?] at h + match h with + | ⟨hlt, _, h⟩ => + have := String.lt_next t.s t.i + simp [String.Iterator.hasNext] at hlt + simp [← h, String.Iterator.next'] + omega + +/-- Well founded stream instance for `Subarray`. -/ +instance (α) : Stream.WF (Subarray α) α := WF.ofMeasure Subarray.size <| by + intro _ _ h + cases h with + | next h => + simp [next?] at h + match h with + | ⟨_, _, h⟩ => + simp only [← h, Subarray.size] + omega + +/-- Stream instance for `ByteArray.Iterator`. -/ +local instance : Stream ByteArray.Iterator UInt8 where + next? b := + if h : b.hasNext then + some (b.curr' h, b.next' h) + else + none + +/-- Well founded stream instance for `ByteArray.Iterator`. -/ +instance : Stream.WF ByteArray.Iterator UInt8 := WF.ofMeasure (fun b => b.array.size - b.idx) <| by + intro _ _ h + cases h with + | next h => + simp [next?] at h + match h with + | ⟨hlt, _, h⟩ => + simp [ByteArray.Iterator.hasNext] at hlt + simp only [← h, ByteArray.Iterator.next'] + omega