-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathieu_matrix.py
259 lines (194 loc) · 7.18 KB
/
mathieu_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""
Script to find the integer characteristic values for the Mathieu Differential
Equations by the matrixial method (easily found in the literature). This is
done by proposing the solution of the differential equation as a Fourier series
expansion; the Fourier series coefficients are also computed in this
script.
Author: Leonardo Flores Torres
"""
import numpy as np
from const import Q
# Matrix for a0, a2, a4, ...
def matrix_a_even(order: int, n: int):
"""
Computes both even-indexed Mathieu characteristic values and Fourier
coefficients vectors for the even solution.
Parameters
----------
order : int
Related to the order of the matrix, the precision of the characteristic
values and fourier coefficients increases as the order is higher.
n : int
Number of desired characteristic values and fourier coefficients.
Returns
-------
vals : ndarray(dtype=float, ndim=1)
Characteristic values.
vects : ndarray(dtype=float, ndim=2)
Fourier coefficients.
"""
diag = [(2 * i) ** 2 for i in range(order)]
matrix = np.zeros((order, order), dtype=np.float64)
for i in range(order):
matrix[i, i] = diag[i]
if i + 1 < order:
matrix[i, i + 1] = Q
if i > 0:
matrix[i, i - 1] = Q
matrix[0, 1] = np.sqrt(2) * Q
matrix[1, 0] = np.sqrt(2) * Q
# Unordered lists of eigen values and eigen vectors
vals, vects = np.linalg.eig(matrix)
# To change column eigen vectors to rows
vects = np.transpose(vects)
# Sorting the eigen values to match the ascending order
# convention, with their respective eigen vectors
indx = np.argsort(vals)
vals, vects = vals[indx], vects[indx]
vects[:, 0:1] = vects[:, 0:1] / np.sqrt(2)
return vals[:n], vects[:n]
# Matrix for a1, a3, a5, ...
def matrix_a_odd(order: int, n: int):
"""
Computes both odd-indexed Mathieu characteristic values and Fourier
coefficients vectors for the even solution.
Parameters
----------
order : int
Related to the order of the matrix, the precision of the characteristic
values and fourier coefficients increases as the order is higher.
n : int
Number of desired characteristic values and fourier coefficients.
Returns
-------
vals : ndarray(dtype=float, ndim=1)
Characteristic values.
vects : ndarray(dtype=float, ndim=2)
Fourier coefficients.
"""
diag = [(1 + 2 * i) ** 2 for i in range(order)]
matrix = np.zeros((order, order), dtype=np.float64)
for i in range(order):
matrix[i, i] = diag[i]
if i + 1 < order:
matrix[i, i + 1] = Q
if i > 0:
matrix[i, i - 1] = Q
matrix[0, 0] = 1 + Q
# Unordered lists of eigen values and eigen vectors
vals, vects = np.linalg.eig(matrix)
# To change column eigen vectors to rows
vects = np.transpose(vects)
# Sorting the eigen values to match the ascending order
# convention, with their respective eigen vectors
indx = np.argsort(vals)
vals, vects = vals[indx], vects[indx]
return vals[:n], vects[:n]
# Matrix for b2, b4, b6, ...
def matrix_b_even(order: int, n: int):
"""
Computes both even-indexed Mathieu characteristic values and Fourier
coefficients vectors for the odd solution.
Parameters
----------
order : int
Related to the order of the matrix, the precision of the characteristic
values and fourier coefficients increases as the order is higher.
n : int
Number of desired characteristic values and fourier coefficients.
Returns
-------
vals : ndarray(dtype=float, ndim=1)
Characteristic values.
vects : ndarray(dtype=float, ndim=2)
Fourier coefficients.
"""
diag = [(2 * i) ** 2 for i in range(1, order + 1)]
matrix = np.zeros((order, order), dtype=np.float64)
for i in range(order):
matrix[i, i] = diag[i]
if i + 1 < order:
matrix[i, i + 1] = Q
if i > 0:
matrix[i, i - 1] = Q
# Unordered lists of eigen values and eigen vectors
vals, vects = np.linalg.eig(matrix)
# To change column eigen vectors to rows
vects = np.transpose(vects)
# Sorting the eigen values to match the ascending order
# convention, with their respective eigen vectors
indx = np.argsort(vals)
vals, vects = vals[indx], vects[indx]
return vals[:n], vects[:n]
# Matrix for b1, b3, b5, ...
def matrix_b_odd(order: int, n: int):
"""
Computes both odd-indexed Mathieu characteristic values and Fourier
coefficients vectors for the odd solution.
Parameters
----------
order : int
Related to the order of the matrix, the precision of the characteristic
values and fourier coefficients increases as the order is higher.
n : int
Number of desired characteristic values and fourier coefficients.
Returns
-------
vals : ndarray(dtype=float, ndim=1)
Characteristic values.
vects : ndarray(dtype=float, ndim=2)
Fourier coefficients.
"""
diag = [(1 + 2 * i) ** 2 for i in range(order)]
matrix = np.zeros((order, order), dtype=np.float64)
for i in range(order):
matrix[i, i] = diag[i]
if i + 1 < order:
matrix[i, i + 1] = Q
if i > 0:
matrix[i, i - 1] = Q
matrix[0, 0] = 1 - Q
# Unordered lists of eigen values and eigen vectors
vals, vects = np.linalg.eig(matrix)
# To change column eigen vectors to rows
vects = np.transpose(vects)
# Sorting the eigen values to match the ascending order
# convention, with their respective eigen vectors
indx = np.argsort(vals)
vals, vects = vals[indx], vects[indx]
return vals[:n], vects[:n]
# The great list of ordered mathieu characteristic values and
# fourier coefficients
def mathieu_fourier(order: int, n: int):
"""
Full set of Mathieu characteristic values and Fourier coefficients vectors.
The accuracy of the characteristic values and the Fourier coefficients
increases as n increases.
Parameters
----------
order : int
Number of Mathieu characteristic values and Fourier coefficients
vectors to be computed, the precision increases as the usr selects a
higher order.
n_max : int
Number of wanted characteristic values and coefficients.
Returns
-------
vals : ndarray(dtype=float, ndim=1)
Full set of characteristic values.
vects : ndarray(dtype=float, ndim=2)
Full set of Fourier coefficients.
"""
# Getting a little surplus of values and coefficients to ensure that all
# the wanted values and coefficients are obtained at the end when the
# arrays are sliced.
local_n = int((n / 2) + 2)
eig_vals_a, eig_vects_a = matrix_a_even(order, local_n)
eig_vals_b, eig_vects_b = matrix_b_even(order, local_n)
eig_vals = np.concatenate((eig_vals_a, eig_vals_b))
eig_vects = np.concatenate((eig_vects_a, eig_vects_b))
indx = np.argsort(eig_vals)
vals = eig_vals[indx]
vects = eig_vects[indx]
# Still do not know if I should cut the fourier coefficients vectors...?
return vals[:n+1], vects[:n+1]