-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNN.py
48 lines (42 loc) · 1.69 KB
/
NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
from torch.distributions.normal import Normal
import Config
torch.manual_seed(Config.SEED)
class PolicyNN(nn.Module):
def __init__(self, input_shape, output_shape):
super(PolicyNN, self).__init__()
self.actions_mean = nn.Sequential(
nn.Linear(input_shape, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, output_shape)
)
self.actions_logstd = nn.Parameter(torch.zeros(output_shape))
def forward(self, x, actions=None):
# In stead of calculating action as output for NN, we calculate action_mean for each action (4,1)
# We also train input-less parameter which represent log(std)
actions_mean = self.actions_mean(x)
actions_logstd = self.actions_logstd
actions_std = torch.exp(actions_logstd)
# We use mean and std to calculate 4 Normal distributions
prob = Normal(actions_mean, actions_std)
if actions is None:
# To get the actions, we sample the 4 distributions
actions = prob.sample()
# To get logarithm of action probabilities we use Normal.log_prob(action) function
return actions, prob.log_prob(actions), torch.sum(prob.entropy(), dim=-1)
class CriticNN(nn.Module):
def __init__(self, input_shape):
super(CriticNN, self).__init__()
self.model = nn.Sequential(
nn.Linear(input_shape, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
#self.model.double()????
def forward(self, x):
return self.model(x)