forked from yanx27/JS3C-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitti_dataset.py
255 lines (214 loc) · 10.1 KB
/
kitti_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# *_*coding:utf-8 *_*
"""
Author: Xu Yan
File: kitti_dataset.py
@time: 2020/8/12 22:03
"""
import os
import numpy as np
from utils import laserscan
import yaml
from torch.utils.data import Dataset
import torch
import spconv
import math
config_file = os.path.join('opt/semantic-kitti.yaml')
kitti_config = yaml.safe_load(open(config_file, 'r'))
remapdict = kitti_config["learning_map"]
SPLIT_SEQUENCES = {
"train": ["00", "01", "02", "03", "04", "05", "06", "07", "09", "10"],
"valid": ["08"],
"test": ["11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21"]
}
SPLIT_FILES = {
"train": [".bin", ".label", ".invalid", ".occluded"],
"valid": [".bin", ".label", ".invalid", ".occluded"],
"test": [".bin"]
}
EXT_TO_NAME = {".bin": "input", ".label": "label", ".invalid": "invalid", ".occluded": "occluded"}
scan = laserscan.SemLaserScan(nclasses=20, sem_color_dict=kitti_config['color_map'])
def unpack(compressed):
''' given a bit encoded voxel grid, make a normal voxel grid out of it. '''
uncompressed = np.zeros(compressed.shape[0] * 8, dtype=np.uint8)
uncompressed[::8] = compressed[:] >> 7 & 1
uncompressed[1::8] = compressed[:] >> 6 & 1
uncompressed[2::8] = compressed[:] >> 5 & 1
uncompressed[3::8] = compressed[:] >> 4 & 1
uncompressed[4::8] = compressed[:] >> 3 & 1
uncompressed[5::8] = compressed[:] >> 2 & 1
uncompressed[6::8] = compressed[:] >> 1 & 1
uncompressed[7::8] = compressed[:] & 1
return uncompressed
class get_dataset(Dataset):
def __init__(self, config, split="train", augment=False):
""" Load data from given dataset directory. """
self.config = config
self.augment = augment
self.files = {}
self.filenames = []
self.seg_path = config['GENERAL']['dataset_dir']
for ext in SPLIT_FILES[split]:
self.files[EXT_TO_NAME[ext]] = []
self.label_to_names = {0: 'car', 1: 'bicycle', 2: 'motorcycle', 3: 'truck',
4: 'other-vehicle', 5: 'person', 6: 'bicyclist', 7: 'motorcyclist',
8: 'road', 9: 'parking', 10: 'sidewalk', 11: 'other-ground', 12: 'building',
13: 'fence', 14: 'vegetation', 15: 'trunk', 16: 'terrain', 17: 'pole',
18: 'traffic-sign'}
for sequence in SPLIT_SEQUENCES[split]:
complete_path = os.path.join(config['GENERAL']['dataset_dir'], "sequences", sequence, "voxels")
if not os.path.exists(complete_path): raise RuntimeError("Voxel directory missing: " + complete_path)
files = os.listdir(complete_path)
for ext in SPLIT_FILES[split]:
comletion_data = sorted([os.path.join(complete_path, f) for f in files if f.endswith(ext)])
if len(comletion_data) == 0: raise RuntimeError("Missing data for " + EXT_TO_NAME[ext])
self.files[EXT_TO_NAME[ext]].extend(comletion_data)
self.filenames.extend(
sorted([(sequence, os.path.splitext(f)[0]) for f in files if f.endswith(SPLIT_FILES[split][0])]))
self.num_files = len(self.filenames)
remapdict = kitti_config["learning_map"]
# make lookup table for mapping
maxkey = max(remapdict.keys())
# +100 hack making lut bigger just in case there are unknown labels
remap_lut = np.zeros((maxkey + 100), dtype=np.int32)
remap_lut[list(remapdict.keys())] = list(remapdict.values())
seg_remap_lut = remap_lut - 1
seg_remap_lut[seg_remap_lut == -1] = -100
# in completion we have to distinguish empty and invalid voxels.
# Important: For voxels 0 corresponds to "empty" and not "unlabeled".
remap_lut[remap_lut == 0] = 255 # map 0 to 'invalid'
remap_lut[0] = 0 # only 'empty' stays 'empty'.
self.comletion_remap_lut = remap_lut
self.seg_remap_lut = seg_remap_lut
# sanity check:
for k, v in self.files.items():
# print(k, len(v))
assert (len(v) == self.num_files)
if split == 'train':
seg_num_per_class = np.array(config['TRAIN']['seg_num_per_class'])
complt_num_per_class = np.array(config['TRAIN']['complt_num_per_class'])
seg_labelweights = seg_num_per_class / np.sum(seg_num_per_class)
self.seg_labelweights = np.power(np.amax(seg_labelweights) / seg_labelweights, 1 / 3.0)
compl_labelweights = complt_num_per_class / np.sum(complt_num_per_class)
self.compl_labelweights = np.power(np.amax(compl_labelweights) / compl_labelweights, 1 / 3.0)
else:
self.compl_labelweights = torch.Tensor(np.ones(20) * 3)
self.seg_labelweights = torch.Tensor(np.ones(19))
self.compl_labelweights[0] = 1
self.voxel_generator = spconv.utils.VoxelGenerator(
voxel_size=[config['Completion']['voxel_size']]*3,
point_cloud_range=config['Completion']['point_cloud_range'],
max_num_points=20,
max_voxels=256 * 256 * 32
)
def __len__(self):
return self.num_files
def __getitem__(self, t):
""" fill dictionary with available data for given index. """
'''Load Completion Data'''
completion_collection = {}
if self.augment:
# stat = np.random.randint(0,6)
stat = np.random.randint(0,4)
else:
stat = 0 # set 0 with no augment
completion_collection['stat'] = stat
# read raw data and unpack (if necessary)
for typ in self.files.keys():
if typ == "label":
scan_data = np.fromfile(self.files[typ][t], dtype=np.uint16)
scan_data = self.comletion_remap_lut[scan_data]
else:
scan_data = unpack(np.fromfile(self.files[typ][t], dtype=np.uint8))
scan_data = scan_data.reshape(self.config['Completion']['full_scale'])
scan_data = data_augmentation(torch.Tensor(scan_data).unsqueeze(0), stat)
# turn in actual voxel grid representation.
completion_collection[typ] = scan_data
'''Load Segmentation Data'''
seg_point_name = self.seg_path + self.files['input'][t][self.files['input'][t].find('sequences'):].replace('voxels','velodyne')
seg_label_name = self.seg_path + self.files['label'][t][self.files['label'][t].find('sequences'):].replace('voxels','labels')
scan.open_scan(seg_point_name)
scan.open_label(seg_label_name)
remissions = scan.remissions
xyz = scan.points
label = scan.sem_label
label = self.seg_remap_lut[label]
if self.config['Segmentation']['use_coords']:
feature = np.concatenate([xyz, remissions.reshape(-1, 1)], 1)
else:
feature = remissions.reshape(-1, 1)
'''Process Segmentation Data'''
segmentation_collection = {}
coords, label, feature, idxs = self.process_seg_data(xyz, label, feature)
segmentation_collection.update({
'coords': coords,
'label': label,
'feature': feature,
})
'''Generate Alignment Data'''
aliment_collection = {}
xyz = xyz[idxs]
voxels, coords, num_points_per_voxel = self.voxel_generator.generate(np.concatenate([xyz, np.arange(len(xyz)).reshape(-1,1)],-1))
voxel_centers = (coords[:, ::-1] + 0.5) * self.voxel_generator.voxel_size + self.voxel_generator.point_cloud_range[0:3]
aliment_collection.update({
'voxels': voxels,
'coords': coords,
'voxel_centers': voxel_centers,
'num_points_per_voxel': num_points_per_voxel,
})
return self.filenames[t], completion_collection, aliment_collection, segmentation_collection
def process_seg_data(self, xyz, label, feature):
coords = np.ascontiguousarray(xyz - xyz.mean(0))
m = np.eye(3) + np.random.randn(3, 3) * 0.1
m[0][0] *= np.random.randint(0, 2) * 2 - 1
m *= self.config['Segmentation']['scale']
theta = np.random.rand() * 2 * math.pi
m = np.matmul(m, [[math.cos(theta), math.sin(theta), 0], [-math.sin(theta), math.cos(theta), 0], [0, 0, 1]])
coords = np.matmul(coords, m)
m = coords.min(0)
M = coords.max(0)
offset = - m + np.clip(self.config['Segmentation']['full_scale'][1] - M + m - 0.001, 0, None) * np.random.rand(3) + np.clip(
self.config['Segmentation']['full_scale'][1] - M + m + 0.001, None, 0) * np.random.rand(3)
coords += offset
idxs = (coords.min(1) >= 0) * (coords.max(1) < self.config['Segmentation']['full_scale'][1])
coords = coords[idxs]
feature = feature[idxs]
label = label[idxs]
coords = torch.Tensor(coords).long()
feature = torch.Tensor(feature)
label = torch.Tensor(label)
return coords, label, feature, idxs
def data_augmentation(t, state, inverse=False):
assert t.dim() == 4, 'input dimension should be 4!'
if state == 1:
aug_t = t.flip([1])
elif state == 2:
aug_t = t.flip([2])
# elif state == 3:
# k = 1 if not inverse else 3
# aug_t = t.rot90(k, [1, 2])
# elif state == 4:
# aug_t = t.rot90(2, [1, 2])
# elif state == 5:
# k = 3 if not inverse else 1
# aug_t = t.rot90(k, [1, 2])
else:
aug_t = t
return aug_t
def sparse_tensor_augmentation(st, states):
spatial_shape = st.spatial_shape
batch_size = st.batch_size
t = st.dense()
channels = t.shape[1]
for b in range(batch_size):
t[b] = data_augmentation(t[b], states[b])
coords = torch.sum(torch.abs(t), dim=1).nonzero().type(torch.int32)
features = t.permute(0, 2, 3, 4, 1).reshape(-1, channels)
features = features[torch.sum(torch.abs(features), dim=1).nonzero(), :]
features = features.squeeze(1)
nst = spconv.SparseConvTensor(features.float(), coords.int(), spatial_shape, batch_size)
return nst
def tensor_augmentation(st, states):
batch_size = st.shape[0]
for b in range(batch_size):
st[b] = data_augmentation(st[b], states[b])
return st