forked from kiloser/kalman_rako
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalib.py
195 lines (186 loc) · 5.58 KB
/
calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
import numpy as np
import struct
import matplotlib.pyplot as plt
import scipy
import math
from mpl_toolkits.mplot3d import Axes3D
def files(maxnum):
n=1
while n<=maxnum:
filename='pos'+str(n)+'.txt'
yield filename
n+=1
def noisefilter(data,NP,NPS,NPL):
valueF=data[0];
dataF=[]
for v in data:
if v<valueF+NP or v>valueF-NP:
valueF=v
else:
if v<valueF-NPS or v> valueF+NPS :
valueF=(v+valueF)/2
else:
valueF=(1-NPL)*valueF+NPL*v
dataF.append(valueF)
return dataF
def filter_raw_data(data,thread):
i=len(data)
mean=0
dataF=[]
for k in range(0,i):
if mean==0:
mean=data[k]
dataF.append(data[k])
else:
mean=np.mean(dataF)
if np.abs(data[k]-mean)>thread:
dataF.append(mean)
else:
dataF.append(data[k])
return dataF
def magfunc(p,x,y,z):
#a(x-x0)^2+b(y-y0)^2+c(z-z0)^2
# a1,a2,a3,a4,a5,a6,x0,y0,z0=p
# return a1*(x-x0)**2+a2*(y-y0)**2+a3*(z-z0)**2+a4*(x-x0)*(y-y0)+a5*(x-x0)*(z-z0)+a6*(y-y0)*(z-z0)
a1,a2,a3,a4,a5,a6,a7,a8,a9=p
# A=np.matrix([[a1,a4,a5],
# [a4,a2,a6],
# [a5,a6,a3]])
# Ainv=A.I
return a1*x**2+a2*y**2+a3*z**2+2*a4*x*y+2*a5*x*z+2*a6*y*z+2*a7*x+2*a8*y+2*a9*z-1
def accelfunc(p,x,y,z):
a,b,c,x0,y0,z0=p
return a**2*(x-x0)**2+b**2*(y-y0)**2+c**2*(z-z0)**2-16384**2
def magresiduals(p,x,y,z):
return magfunc(p,x,y,z)
def accelresiduals(p,x,y,z):
return accelfunc(p,x,y,z)
def KBcacu(paras):
A=np.matrix([[paras[0],paras[3],paras[4]],[paras[3],paras[1],paras[5]],[paras[4],paras[5],paras[2]]])
Ainv=A.I
B=-Ainv*np.matrix([paras[6],paras[7],paras[8]]).T
ap=Ainv[0,0]
dp=Ainv[0,1]
ep=Ainv[0,2]
cp=Ainv[2,2]
bp=Ainv[1,1]
fp=Ainv[1,2]
kx=math.sqrt(ap)/magmod
ky=math.sqrt(bp)/magmod
kz=math.sqrt(cp)/magmod
alphe=math.asin(ep/math.sqrt(ap*cp))
temp=((dp*cp-ep*fp)/math.sqrt((ap*cp-ep**2)*(bp*cp-fp**2)))
beta=math.asin(temp)
gama=math.asin(fp/math.sqrt(bp*cp))
K=np.matrix([[1/kx, 0, -alphe/kz],
[-beta/kx, 1/ky, -gama/kz],
[0, 0, 1/kz]])
return K,B
accelxM=[]
accelyM=[]
accelzM=[]
magxM=[]
magyM=[]
magzM=[]
framelen_std=200
num_mpudata=10
filecnt=72
magmod=345#unit is 0.15uT
plt.ion()
for filename in files(filecnt):
try:
fd=open('data\\'+filename,'r')
accelx=[]
accely=[]
accelz=[]
gyrox=[]
gyroy=[]
gyroz=[]
magx=[]
magy=[]
magz=[]
num=int(fd.seek(0,2)/(framelen_std*3))
fd.seek(0,0)
for j in range(0,num):
temp=fd.read(framelen_std*3)
if len(temp) < framelen_std*3:
print('end of file \n')
break
temp=bytes.fromhex(temp)
dis=struct.unpack('<4f',temp[0:16])
for i in range(0,num_mpudata):
mpudata=list(struct.unpack('<9h',temp[16+i*18:34+i*18]))
gyrox.append(mpudata[0])
gyroy.append(mpudata[1])
gyroz.append(mpudata[2])
accelx.append(mpudata[3])
accely.append(mpudata[4])
accelz.append(mpudata[5])
magx.append(mpudata[6])
magy.append(mpudata[7])
magz.append(mpudata[8])
NP=200#corresponding NP/16384*9.8m/s^2
NPL=0.0405#Fc=NPL/(1-NPL)*2pi*dT
NPS=150#corresponding NPS/16384*9.8m/s^2
accelxM.append(np.mean(filter_raw_data(accelx,400)))
accelyM.append(np.mean(filter_raw_data(accely,400)))
accelzM.append(np.mean(filter_raw_data(accelz,400)))
magxM.append(np.mean(filter_raw_data(magx,40)))
magyM.append(np.mean(filter_raw_data(magy,40)))
magzM.append(np.mean(filter_raw_data(magz,40)))
# accelxF=noisefilter(accelx,NP,NPS,NPL)
# accelyF=noisefilter(accely,NP,NPS,NPL)
# accelzF=noisefilter(accelz,NP,NPS,NPL)
except IOError as e:
print(e)
filecnt=filecnt-1
finally:
fd.close()
fig = plt.figure(1)
ax1 = fig.add_subplot(111,projection='3d')
ax1.scatter(accelxM, accelyM, accelzM,marker='.')
plt.pause(0.01)
ax1.legend('accel')
fig = plt.figure(2)
ax2 = fig.add_subplot(111,projection='3d')
ax2.scatter(magxM, magyM, magzM,marker='.')
plt.pause(0.01)
ax2.legend('mag')
plt.show()
print('starting optimizing\n')
accelxM=np.array(accelxM)
accelyM=np.array(accelyM)
accelzM=np.array(accelzM)
magxM=np.array(magxM)
magyM=np.array(magyM)
magzM=np.array(magzM)
p0=[1,1,1,-755.40186823, -359.90878696, -874.79820164]
print('accel resault\r\n')
paras1=scipy.optimize.leastsq(accelresiduals,p0,args=(accelxM,accelyM,accelzM))
print(paras1[0])
p0=[0,0,0,0,0,0,0,0,0]
print('mag resault\r\n')
paras2=scipy.optimize.leastsq(magresiduals,p0,args=(magxM,magyM,magzM))
print(paras2[0])
K,B=KBcacu(paras2[0])
fig=plt.figure(3)
ax = fig.add_subplot(111,projection='3d')
for i in range(0,len(magxM)):
Magm=np.matrix([magxM[i],magyM[i],magzM[i]]).T
Magr=K*(Magm-B)
ax.scatter(Magr[0], Magr[1], Magr[2])
#out=open('data\\outdata','wb')
#buff=struct.pack(str(filecnt)+'d',*accelxM)
#out.write(buff)
#buff=struct.pack(str(filecnt)+'d',*accelyM)
#out.write(buff)
#buff=struct.pack(str(filecnt)+'d',*accelzM)
#out.write(buff)
#buff=struct.pack(str(filecnt)+'d',*magxM)
#out.write(buff)
#buff=struct.pack(str(filecnt)+'d',*magyM)
#out.write(buff)
#buff=struct.pack(str(filecnt)+'d',*magzM)
#out.write(buff)
#out.close()