forked from kiloser/kalman_rako
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_serial.py
205 lines (197 loc) · 7.32 KB
/
main_serial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
import Madgwick
import Calibfun
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import serial
import struct
import quaternion
import Filters
# =============================================================================
#frame struct
num_AC=4
datalen_AC=num_AC*4
freq_mpu=10
single_len_mpu=18
total_len_mpu=single_len_mpu*freq_mpu
info_len=2
divider_len=2
framelen_std=total_len_mpu+datalen_AC+info_len+divider_len#加两个界定符
# =============================================================================
gyro_array=np.zeros((freq_mpu,3),dtype=np.float)
accel_array=np.zeros((freq_mpu,3),dtype=np.float)
mag_array=np.zeros((freq_mpu,3),dtype=np.float)
gyro_array_raw=np.zeros((freq_mpu,3),dtype=np.float)
accel_array_raw=np.zeros((freq_mpu,3),dtype=np.float)
mag_array_raw=np.zeros((freq_mpu,3),dtype=np.float)
disuwb_array=np.zeros((1,num_AC),dtype=np.float)
info_array=np.zeros((1,2),dtype=np.int)
quat=[1,0,0,0]
# =============================================================================
ser=serial.Serial()
ser.baudrate=115200
ser.port='COM4'
if not ser.isOpen():
ser.open()
ser.flushInput()
ser.flushOutput()
titlelist=[['pitch','roll','yaw'],
['q1','q2','q3','q4'],
['world_accelx','world_accely','world_accelz'],
['accelx','accely','accelz']]
showeular=1
showquat=0
showaccel=1
showfilaccel=0
eulardata=[[],[],[]]
quatdata=[[],[],[],[]]
accelwddata=[[],[],[]]
accel_fdata=[[],[],[]]
accel_caldata=[[],[],[]]
x_lim=200
data_idx=0
quat=[1,0,0,0]
plt.ion()
if showeular==1:
ax_eular=[]
fig1=plt.figure(1,figsize=(14,8))
for j in range(0,3):
axtemp=plt.subplot(3,2,2*j+1)
axtemp.set_title(titlelist[0][j])
axtemp.set_xlim(0,x_lim)
ax_eular.append(axtemp)
plt.pause(.05)
if showquat==1:
ax_quat=[]
fig2=plt.figure(2,figsize=(8,6))
for j in range(0,4):
axtemp=plt.subplot(4,1,j+1)
axtemp.set_title(titlelist[1][j])
axtemp.set_xlim(0,x_lim)
ax_quat.append(axtemp)
plt.pause(.05)
if showaccel==1:
ax_accel=[]
# fig=plt.figure(3,figsize=(8,6))
for j in range(0,3):
axtemp=plt.subplot(3,2,2*j+2)
axtemp.set_title(titlelist[2][j])
axtemp.set_xlim(0,x_lim)
ax_accel.append(axtemp)
plt.pause(.05)
if showfilaccel==1:
ax_filaccel=[]
fig=plt.figure(4,figsize=(8,6))
for j in range(0,3):
axtemp=plt.subplot(3,1,j+1)
axtemp.set_title(titlelist[3][j])
axtemp.set_xlim(0,x_lim)
ax_filaccel.append(axtemp)
plt.pause(.05)
libc=Madgwick.SelDll("quat.dll")
while True:
while ser.inWaiting()!=framelen_std:
pass
temp=ser.read(framelen_std)
data_idx+=1
disuwb_array=struct.unpack('<4f',temp[0:datalen_AC])
for i in range(0,freq_mpu):
mpudata=list(struct.unpack('<9h',temp[datalen_AC+i*single_len_mpu:single_len_mpu+datalen_AC+i*single_len_mpu]))
gyro_data=[float(v) for v in mpudata[0:3]]#gyroscopes data
accel_data=[ kk for kk in mpudata[3:6]]#accelerometer data
mag_data=[ kk for kk in mpudata[6:9]]#mag data
accel=Calibfun.calibaccel(accel_data)
gyro=Calibfun.calibgyro(gyro_data)
mag=Calibfun.calibmag(mag_data)
#===============================================================================
gyro_array_raw[i,:]=mpudata[0:3]
accel_array_raw[i,:]=mpudata[3:6]
mag_array_raw[i,:]=mpudata[6:9]
gyro_array[i,:]=accel
accel_array[i,:]=gyro
mag_array[i,:]=mag
#===============================================================================
quat,eular=Madgwick.MadgwickQuat(accel,gyro,mag,quat,0.1,libc)
quat_q=quaternion.as_quat_array(quat)
accel_wd=quat_q*(quaternion.as_quat_array([0]+accel))*quat_q.inverse()
accel_wd=quaternion.as_float_array(accel_wd)
accel_wd=accel_wd[1::]
accel_f=Filters.filter_raw_data([[kk] for kk in accel],0.3)
for j in range(0,3):
if data_idx*10>x_lim:
eulardata[j]=eulardata[j][1::]
eulardata[j].extend([eular[j]])
else:
eulardata[j].extend([eular[j]])
for j in range(0,3):
if data_idx*10>x_lim:
accelwddata[j]=accelwddata[j][1::]
accelwddata[j].extend([accel_wd[j]])
else:
accelwddata[j].extend([accel_wd[j]])
for j in range(0,4):
if data_idx*10>x_lim:
quatdata[j]=quatdata[j][1::]
quatdata[j].extend([quat[j]])
else:
quatdata[j].extend([quat[j]])
for j in range(0,3):
if data_idx*10>x_lim:
accel_fdata[j]=accel_fdata[j][1::]
accel_fdata[j].extend([accel_f[j]])
else:
accel_fdata[j].extend([accel_f[j]])
for j in range(0,3):
if data_idx*10>x_lim:
accel_caldata[j]=accel_caldata[j][1::]
accel_caldata[j].extend([accel[j]])
else:
accel_caldata[j].extend([accel[j]])
if showeular==1:
for j in range(0,3):
if data_idx*10>x_lim:
ax_eular[j].set_xlim(data_idx*10-x_lim,data_idx*10)
x_range=range(data_idx*10-x_lim,data_idx*10)
else:
x_range=range(len(eulardata[j]))
ax_eular[j].plot(x_range,eulardata[j],'b')
ax_eular[j].plot(x_range,np.zeros(len(eulardata[j])),'r')
ax_eular[j].set_ylim(-200,200)
# ax_eular[j].set_ylim(np.min(eulardata[j])-5,np.max(eulardata[j])+5)
plt.pause(.01)
if showaccel==1:
for j in range(0,3):
if data_idx*10>x_lim:
ax_accel[j].set_xlim(data_idx*10-x_lim,data_idx*10)
x_range=range(data_idx*10-x_lim,data_idx*10)
else:
x_range=range(len(accelwddata[j]))
ax_accel[j].plot(x_range,accelwddata[j],'b')
ax_accel[j].plot(x_range,np.zeros(len(accelwddata[j])),'r')
ax_accel[j].set_ylim(np.min(accelwddata[j])-1,np.max(accelwddata[j])+1)
plt.pause(.01)
if showquat==1:
for j in range(0,4):
if data_idx*10>x_lim:
ax_quat[j].set_xlim(data_idx*10-x_lim,data_idx*10)
x_range=range(data_idx*10-x_lim,data_idx*10)
else:
x_range=range(len(quatdata[j]))
ax_quat[j].plot(x_range,quatdata[j],'b')
ax_quat[j].plot(x_range,np.zeros(len(quatdata[j])),'r')
ax_quat[j].set_ylim(np.min(quatdata[j])-0.2,np.max(quatdata[j])+0.2)
plt.pause(.01)
if showfilaccel==1:
for j in range(0,3):
if data_idx*10>x_lim:
ax_filaccel[j].set_xlim(data_idx*10-x_lim,data_idx*10)
x_range=range(data_idx*10-x_lim,data_idx*10)
else:
x_range=range(len(accel_fdata[j]))
ax_filaccel[j].plot(x_range,accel_fdata[j],'b')
ax_filaccel[j].plot(x_range,accel_caldata[j],'g')
ax_filaccel[j].plot(x_range,np.zeros(len(accel_fdata[j])),'r')
ax_filaccel[j].set_ylim(np.min(accel_fdata[j])-0.2,np.max(accel_fdata[j])+0.2)
plt.pause(.01)
info_array=struct.unpack('<2B',temp[-4:-2])