This guide describes the process of deploying FATE using Docker Compose.
The nodes (target nodes) to install FATE must meet the following requirements:
- A Linux host
- Docker: 18+
- Docker-Compose: 1.24+
- Network connection to Internet to pull container images from Docker Hub. If network connection to Internet is not available, consider to set up Harbor as a local registry or use offline images.
A Linux host can be used as a deployment machine to run installation scripts to deploy FATE onto target hosts.
First, on a Linux host, download KubeFATE from releases pages, unzip it into folder KubeFATE.
By default, the installation script pulls the images from Docker Hub during the deployment. If the target node is not connected to Internet, refer to the below section to set up a local registry such as Harbor and use the offline images.
Please refer to this guide to install Harbor as a local registry.
After setting up a Harbor registry, update the setting in the .env
file. Change RegistryURI
to the hostname or IP address of the Harbor instance. This setting lets the installation script use a local registry instead of Docker Hub.
In the below example, 192.168.10.1
is the IP address of Harbor.
$ cd KubeFATE/
$ vi .env
...
RegistryURI=192.168.10.1/federatedai
...
NOTE: For Chinese user who has difficulty to access docker hub, you can set RegistryURI
to hub.c.163.com
to use the mirror of the registry within China.
There are usually multiple parties participating a federated training. Each party should install FATE using a set of configuration files and scripts.
The following steps illustrate how to generate necessary configuration files and deploy two parties on different hosts.
Before deploying the FATE system, multiple parties should be defined in the configuration file: docker-deploy/parties.conf
.
In the following sample of docker-deploy/parties.conf
, two parities are specified by id as 10000
and 9999
. Their cluster are going to be deployed on hosts with IP addresses of 192.168.7.1 and 192.168.7.2. By default, to save time for downloading images, KubeFATE will use images without neural network dependencies, set the enabled_nn
to true
in "parties.conf" if neural network workflow is required.
user=fate
dir=/data/projects/fate
partylist=(10000 9999)
partyiplist=(192.168.7.1 192.168.7.2)
servingiplist=(192.168.7.1 192.168.7.2)
exchangeip=
# computing_backend could be eggroll or spark.
computing_backend=eggroll
# true if you need python-nn else false, the default value will be false
enabled_nn=false
Spark was introduced in FATE v1.5 as the underlying computing backend, for more details about FATE on Spark please refer to this document.
On the host running FATE, the user is non root and needs/data/projects/fate
folder permission and docker permission. No other action is required if the user is root.
# Create a fate user whose group is docker
[user@localhost]$ sudo useradd -s /bin/bash -g docker -d /home/fate fate
# Set user password
[user@localhost]$ sudo passwd fate
# Create docker-compose deployment directory
[user@localhost]$ sudo mkdir -p /data/projects/fate
# Modify the corresponding users and groups of docker-compose deployment directory
[user@localhost]$ sudo chown -R fate:docker /data/projects/fate
# Select users
[user@localhost]$ sudo su fate
# Check whether you have docker permission
[fate@localhost]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
# View docker-compose deployment directory
[fate@localhost]$ ls -l /data/projects/
total 0
drwxr-xr-x. 2 fate docker 6 May 27 00:51 fate
By default, the exchange node won't be deployed. The exchange service runs on port 9371. If a exchange (co-locates on the host of party or standalone) node is needed, update the value of exchangeip
to the IP address of the desired host.
After completing the above configuration file, use the following commands to generate configuration of target hosts.
$ cd docker-deploy
$ ./generate_config.sh
Now, tar files have been generated for each party including the exchange node (party). They are named as confs-<party-id>.tar
and serving-<party-id>.tar
.
Note: Before running the below commands, all target hosts must
- allow password-less SSH access with SSH key;
- meet the requirements specified in Prerequisites.
To deploy FATE to all configured target hosts, use the below command:
$ ./docker_deploy.sh all
The script copies tar files (e.g. confs-<party-id>.tar
or serving-<party-id>.tar
) to corresponding target hosts. It then launches a FATE cluster on each host using docker-compose
commands.
By Default, the script will start the training and serving cluster simultaneously. If you need to start them separately, add the --training
or --serving
to the docker_deploy.sh
as follows.
(Optional) To deploy all parties training cluster, use the below command:
$ ./docker_deploy.sh all --training
(Optional) To deploy all parties serving cluster, use the below command:
$ ./docker_deploy.sh all --serving
(Optional) To deploy FATE to a single target host, use the below command with the party's id (10000 in the below example):
$ ./docker_deploy.sh 10000
(Optional) To deploy the exchange node to a target host, use the below command:
$ ./docker_deploy.sh exchange
Once the commands finish, log in to any host and use docker ps
to verify the status of the cluster. A sample output is as follows:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
69b8b36af395 federatedai/eggroll:<tag> "bash -c 'java -Dlog…" 2 hours ago Up 2 hours
0.0.0.0:9371->9370/tcp confs-exchange_exchange_1
71cd792ba088 federatedai/serving-proxy:<tag> "/bin/sh -c 'java -D…" 2 hours ago Up 2 hours
0.0.0.0:8059->8059/tcp, 0.0.0.0:8869->8869/tcp, 8879/tcp serving-10000_serving-proxy_1
2c79047918c6 federatedai/serving-server:<tag> "/bin/sh -c 'java -c…" 2 hours ago Up 2 hours
0.0.0.0:8000->8000/tcp serving-10000_serving-server_1
b1a5384a55dc redis:5 "docker-entrypoint.s…" 2 hours ago Up 2 hours
6379/tcp serving-10000_redis_1
321c4e29313b federatedai/client:<tag> "/bin/sh -c 'sleep 5…" 2 hours ago Up 2 hours
0.0.0.0:20000->20000/tcp confs-10000_client_1
c1b3190126ab federatedai/fateboard:<tag> "/bin/sh -c 'java -D…" 2 hours ago Up 2 hours
0.0.0.0:8080->8080/tcp confs-10000_fateboard_1
cc679996e79f federatedai/python:<tag> "/bin/sh -c 'sleep 5…" 2 hours ago Up 2 hours
0.0.0.0:8484->8484/tcp, 0.0.0.0:9360->9360/tcp, 0.0.0.0:9380->9380/tcp confs-10000_python_1
c79800300000 federatedai/eggroll:<tag> "bash -c 'java -Dlog…" 2 hours ago Up 2 hours
4671/tcp confs-10000_nodemanager_1
ee2f1c3aad99 federatedai/eggroll:<tag> "bash -c 'java -Dlog…" 2 hours ago Up 2 hours
4670/tcp confs-10000_clustermanager_1
a1f784882d20 federatedai/eggroll:<tag> "bash -c 'java -Dlog…" 2 hours ago Up 2 hours 0.0.0.0:9370->9370/tcp confs-10000_rollsite_1
2b4526e6d534 mysql:8 "docker-entrypoint.s…" 2 hours ago Up 2 hours 3306/tcp, 33060/tcp confs-10000_mysql_1
On the target node of each party, a container named confs-<party_id>_python_1
should have been created and running the fate-flow
service. For example, on Party 10000's node, run the following commands to verify the deployment:
$ docker exec -it confs-10000_python_1 bash
$ cd /data/projects/fate/examples/toy_example/
$ python run_toy_example.py 10000 9999 1
If the test passed, the output may look like the following:
"2019-08-29 07:21:25,353 - secure_add_guest.py[line:96] - INFO: begin to init parameters of secure add example guest"
"2019-08-29 07:21:25,354 - secure_add_guest.py[line:99] - INFO: begin to make guest data"
"2019-08-29 07:21:26,225 - secure_add_guest.py[line:102] - INFO: split data into two random parts"
"2019-08-29 07:21:29,140 - secure_add_guest.py[line:105] - INFO: share one random part data to host"
"2019-08-29 07:21:29,237 - secure_add_guest.py[line:108] - INFO: get share of one random part data from host"
"2019-08-29 07:21:33,073 - secure_add_guest.py[line:111] - INFO: begin to get sum of guest and host"
"2019-08-29 07:21:33,920 - secure_add_guest.py[line:114] - INFO: receive host sum from guest"
"2019-08-29 07:21:34,118 - secure_add_guest.py[line:121] - INFO: success to calculate secure_sum, it is 2000.0000000000002"
For more details about the testing result, please refer to python/examples/toy_example/README.md
.
$ docker exec -it confs-10000_python_1 bash
$ cd fate_flow
$ vi examples/upload_host.json
{
"file": "examples/data/breast_hetero_host.csv",
"head": 1,
"partition": 10,
"work_mode": 1,
"namespace": "fate_flow_test_breast",
"table_name": "breast"
}
$ python fate_flow_client.py -f upload -c examples/upload_host.json
$ docker exec -it confs-9999_python_1 bash
$ cd fate_flow
$ vi examples/upload_guest.json
{
"file": "examples/data/breast_hetero_guest.csv",
"head": 1,
"partition": 10,
"work_mode": 1,
"namespace": "fate_flow_test_breast",
"table_name": "breast"
}
$ python fate_flow_client.py -f upload -c examples/upload_guest.json
Currently the FATE Serving does not support DSL 2.0, which introduced in FATE 1.5. So please do not use "dsl_version": "2"
in job configuration while online-serving is required.
$ vi examples/test_hetero_lr_job_conf.json
{
"initiator": {
"role": "guest",
"party_id": 9999
},
"job_parameters": {
"work_mode": 1
},
"role": {
"guest": [9999],
"host": [10000],
"arbiter": [10000]
},
"role_parameters": {
"guest": {
"args": {
"data": {
"train_data": [{"name": "breast", "namespace": "fate_flow_test_breast"}]
}
},
"dataio_0":{
"with_label": [true],
"label_name": ["y"],
"label_type": ["int"],
"output_format": ["dense"]
}
},
"host": {
"args": {
"data": {
"train_data": [{"name": "breast", "namespace": "fate_flow_test_breast"}]
}
},
"dataio_0":{
"with_label": [false],
"output_format": ["dense"]
}
}
},
"algorithm_parameters": {
"hetero_lr_0": {
"penalty": "L2",
"optimizer": "rmsprop",
"alpha": 0.01,
"max_iter": 3,
"batch_size": 320,
"learning_rate": 0.15,
"init_param": {
"init_method": "random_uniform"
}
}
}
}
$ vi examples/test_hetero_lr_job_dsl.json
{
"components" : {
"dataio_0": {
"module": "DataIO",
"input": {
"data": {
"data": [
"args.train_data"
]
}
},
"output": {
"data": ["train"],
"model": ["dataio"]
},
"need_deploy": true
},
"hetero_feature_binning_0": {
"module": "HeteroFeatureBinning",
"input": {
"data": {
"data": [
"dataio_0.train"
]
}
},
"output": {
"data": ["train"],
"model": ["hetero_feature_binning"]
}
},
"hetero_feature_selection_0": {
"module": "HeteroFeatureSelection",
"input": {
"data": {
"data": [
"hetero_feature_binning_0.train"
]
},
"isometric_model": [
"hetero_feature_binning_0.hetero_feature_binning"
]
},
"output": {
"data": ["train"],
"model": ["selected"]
}
},
"hetero_lr_0": {
"module": "HeteroLR",
"input": {
"data": {
"train_data": ["hetero_feature_selection_0.train"]
}
},
"output": {
"data": ["train"],
"model": ["hetero_lr"]
}
},
"evaluation_0": {
"module": "Evaluation",
"input": {
"data": {
"data": ["hetero_lr_0.train"]
}
},
"output": {
"data": ["evaluate"]
}
}
}
}
$ python fate_flow_client.py -f submit_job -d examples/test_hetero_lr_job_dsl.json -c examples/test_hetero_lr_job_conf.json
output:
{
"data": {
"board_url": "http://fateboard:8080/index.html#/dashboard?job_id=202003060553168191842&role=guest&party_id=9999",
"job_dsl_path": "/data/projects/fate/python/jobs/202003060553168191842/job_dsl.json",
"job_runtime_conf_path": "/data/projects/fate/python/jobs/202003060553168191842/job_runtime_conf.json",
"logs_directory": "/data/projects/fate/python/logs/202003060553168191842",
"model_info": {
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202003060553168191842"
}
},
"jobId": "202003060553168191842",
"retcode": 0,
"retmsg": "success"
}
$ python fate_flow_client.py -f query_task -j 202003060553168191842 | grep f_status
output:
"f_status": "success",
"f_status": "success",
$ vi examples/publish_load_model.json
{
"initiator": {
"party_id": "9999",
"role": "guest"
},
"role": {
"guest": ["9999"],
"host": ["10000"],
"arbiter": ["10000"]
},
"job_parameters": {
"work_mode": 1,
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202003060553168191842"
}
}
$ python fate_flow_client.py -f load -c examples/publish_load_model.json
output:
{
"data": {
"guest": {
"9999": 0
},
"host": {
"10000": 0
}
},
"jobId": "202005120554339112925",
"retcode": 0,
"retmsg": "success"
}
$ vi examples/bind_model_service.json
{
"service_id": "test",
"initiator": {
"party_id": "9999",
"role": "guest"
},
"role": {
"guest": ["9999"],
"host": ["10000"],
"arbiter": ["10000"]
},
"job_parameters": {
"work_mode": 1,
"model_id": "arbiter-10000#guest-9999#host-10000#model",
"model_version": "202003060553168191842"
}
}
$ python fate_flow_client.py -f bind -c examples/bind_model_service.json
output:
{
"retcode": 0,
"retmsg": "service id is test"
}
Send the following message to serving interface "{SERVING_SERVICE_IP}:8059/federation/v1/inference" of the "GUEST" party.
$ curl -X POST -H 'Content-Type: application/json' -i 'http://192.168.7.2:8059/federation/v1/inference' --data '{
"head": {
"serviceId": "test"
},
"body": {
"featureData": {
"x0": 0.254879,
"x1": -1.046633,
"x2": 0.209656,
"x3": 0.074214,
"x4": -0.441366,
"x5": -0.377645,
"x6": -0.485934,
"x7": 0.347072,
"x8": -0.287570,
"x9": -0.733474
},
"sendToRemoteFeatureData": {
"id": "123"
}
}
}'
output:
{"flag":0,"data":{"prob":0.30684422824464636,"retmsg":"success","retcode":0}
Use this command to stop all cluster:
./docker_deploy.sh --delete all
To delete the cluster completely, log in to each host and run the commands as follows:
$ cd /data/projects/fate/confs-<id>/ # id of party
$ docker-compose down
$ rm -rf ../confs-<id>/ # delete the legacy files