diff --git a/.github/workflows/amd-ci.yml b/.github/workflows/amd-ci.yml index 4a74521d2..857e5415f 100644 --- a/.github/workflows/amd-ci.yml +++ b/.github/workflows/amd-ci.yml @@ -1,4 +1,4 @@ -name: GitHub Actions CI (AMD) +name: AMD GPU CI on: push: @@ -10,9 +10,13 @@ on: pull_request: branches: - main - # paths: - # - "src/**" - # - "test/**" + paths: + - "src/**" + - "test/**" + schedule: + # Runs at 00:00 UTC daily + - cron: '0 0 * * *' + workflow_dispatch: # Enables manual trigger concurrency: # This causes it to cancel previous in-progress actions on the same PR / branch, diff --git a/.github/workflows/ci.yml b/.github/workflows/nvi-ci.yml similarity index 99% rename from .github/workflows/ci.yml rename to .github/workflows/nvi-ci.yml index a78f7c903..7efe5c05f 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/nvi-ci.yml @@ -1,4 +1,4 @@ -name: Modal GPU CI +name: NVIDIA GPU CI on: push: diff --git a/test/transformers/test_cross_entropy.py b/test/transformers/test_cross_entropy.py index f2bf0d62f..c5e371654 100644 --- a/test/transformers/test_cross_entropy.py +++ b/test/transformers/test_cross_entropy.py @@ -9,10 +9,10 @@ LigerCrossEntropyFunction, liger_cross_entropy_kernel, ) +from liger_kernel.ops.utils import is_hip from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss from liger_kernel.transformers.functional import liger_cross_entropy from liger_kernel.utils import infer_device -from liger_kernel.ops.utils import is_hip device = infer_device() set_seed(42) diff --git a/test/utils.py b/test/utils.py index 584b6b9d6..711c4f870 100644 --- a/test/utils.py +++ b/test/utils.py @@ -373,7 +373,6 @@ def get_batch_logps( labels: Labels for which to compute the log probabilities. Label tokens with a value of ignore_index are ignored. Shape: (batch_size, sequence_length) average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. is_encoder_decoder: Whether the model is an encoder-decoder model. - Returns: A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. """