-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmfcc.py
89 lines (75 loc) · 4.45 KB
/
mfcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
from python_speech_features import mfcc, delta
from scipy.io import wavfile
import matplotlib.pyplot as plt
from preprocessing import remove_pauses, normalize_signal
from utils import stem
def get_mfcc_features(sample_rate, signal, num_coefficients=13, use_deltas=True, show_log=False):
n_fft = 512
n_mels = 40
mfcc_features = mfcc(signal, samplerate=sample_rate, numcep=num_coefficients, winlen=n_fft / sample_rate,
winstep=0.01, nfft=n_fft, nfilt=n_mels, preemph=0.0, ceplifter=0,
appendEnergy=False, winfunc=np.hamming)
if use_deltas:
mfcc_features_d = delta(mfcc_features, 2)
mfcc_features_dd = delta(mfcc_features_d, 2)
mfcc_all_features = np.column_stack((mfcc_features[:, 1:], mfcc_features_d[:, 1:], mfcc_features_dd[:, 1:]))
else:
mfcc_all_features = mfcc_features[:, 1:]
if show_log:
print("mfcc_all_features.shape: ", mfcc_all_features.shape)
print("mfcc_all_features:\n", mfcc_all_features)
return mfcc_all_features
def get_mfcc_features_with_mean(wav_filename, num_coefficients=13, show_log=True):
(sample_rate, signal) = wavfile.read(wav_filename)
n_fft = 512
n_mels = 40
mfcc_features = mfcc(signal, samplerate=sample_rate, numcep=num_coefficients, winlen=n_fft / sample_rate,
winstep=0.01, nfft=n_fft, nfilt=n_mels, preemph=0.0, ceplifter=0,
appendEnergy=False, winfunc=np.hamming)
mfcc_features_transposed = np.transpose(mfcc_features)[1:]
mfcc_features_transposed_mean = np.round(mfcc_features_transposed.mean(axis=1), 3)
if show_log:
print("mfcc_features_transposed.shape: ", mfcc_features_transposed.shape)
print("mfcc_features_transposed:\n", mfcc_features_transposed)
print("mfcc_features_transposed_mean.shape:\n", mfcc_features_transposed_mean.shape)
print("mfcc_features_transposed_mean:\n", mfcc_features_transposed_mean)
mfcc_deltas = delta(mfcc_features, 2)
mfcc_deltas_transposed = np.transpose(mfcc_deltas)[1:]
mfcc_deltas_transposed_mean = np.round(mfcc_deltas_transposed.mean(axis=1), 3)
if show_log:
print("mfcc_deltas_transposed.shape: ", mfcc_deltas_transposed.shape)
print("mfcc_deltas_transposed:\n", mfcc_deltas_transposed)
print("mfcc_deltas_transposed_mean.shape:\n", mfcc_deltas_transposed_mean.shape)
print("mfcc_deltas_transposed_mean:\n", mfcc_deltas_transposed_mean)
mfcc_deltas_deltas_transposed = np.transpose(delta(mfcc_deltas, 2))[1:]
mfcc_deltas_deltas_transposed_mean = np.round(mfcc_deltas_deltas_transposed.mean(axis=1), 3)
if show_log:
print("mfcc_deltas_deltas_transposed.shape: ", mfcc_deltas_deltas_transposed.shape)
print("mfcc_deltas_deltas_transposed:\n", mfcc_deltas_deltas_transposed)
print("mfcc_deltas_deltas_transposed_mean.shape:\n", mfcc_deltas_deltas_transposed_mean.shape)
print("mfcc_deltas_deltas_transposed_mean:\n", mfcc_deltas_deltas_transposed_mean)
return (mfcc_features_transposed, mfcc_features_transposed_mean), \
(mfcc_deltas_transposed, mfcc_deltas_transposed_mean), \
(mfcc_deltas_deltas_transposed, mfcc_deltas_deltas_transposed_mean)
if __name__ == '__main__':
num_mfcc = 13
use_deltas = True
(sample_rate, signal) = wavfile.read("speakers/russian/female/anonymous104/ru_0036.wav")
samples_without_pauses = remove_pauses(sample_rate, normalize_signal(signal))
mfcc_features1 = get_mfcc_features(sample_rate, samples_without_pauses, num_mfcc, use_deltas)
(sample_rate, signal) = wavfile.read("speakers/russian/female/anonymous104/ru_0037.wav")
samples_without_pauses = remove_pauses(sample_rate, normalize_signal(signal))
mfcc_features2 = get_mfcc_features(sample_rate, samples_without_pauses, num_mfcc, use_deltas)
# Проверка значений коэффициентов в каких-либо фреймах
plt.subplot(2, 1, 1)
stem(mfcc_features1[0, :num_mfcc - 1], linefmt='r', markerfmt='ro')
stem(mfcc_features1[1, :num_mfcc - 1], linefmt='b', markerfmt='bo')
stem(mfcc_features1[20, :num_mfcc - 1], linefmt='y', markerfmt='yo')
plt.grid(True)
plt.subplot(2, 1, 2)
stem(mfcc_features2[0, :num_mfcc - 1], linefmt='r', markerfmt='ro')
stem(mfcc_features2[1, :num_mfcc - 1], linefmt='b', markerfmt='bo')
stem(mfcc_features2[20, :num_mfcc - 1], linefmt='y', markerfmt='yo')
plt.grid(True)
plt.show()