-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
88 lines (65 loc) · 3.3 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from math import log
import matplotlib.pyplot as plt
import numpy as np
from scipy.fft import fft
from scipy.io import wavfile
from sklearn.cluster import KMeans
def get_frame_powers(sample_rate, samples):
# Определение окна для Фурье-преобразования
N = samples.shape[0] # Число отсчетов сигнала
T = 1.0 / sample_rate # Период дискретизации
n = 0.02 / T # Количество отсчетов в периоде стационарности
s = log(n) // log(2) # Степень двойки(log2(n) = log(n) / log(2))
n_in_frame = int(2 ** s) # Количество отсчетов в кадре
K = N // n_in_frame # Количество итераций Фурье-преобразования
frame_powers = np.array([[0.0, 0]] * K)
for i in range(K):
fft_result = fft(samples[i * n_in_frame:(i + 1) * n_in_frame])
frame_powers[i] = [0.5 * (abs(fft_result) ** 2).sum(), 0]
return frame_powers, n_in_frame
def remove_pauses(sample_rate, samples):
frame_powers, n_in_frame = get_frame_powers(sample_rate, samples)
init_centers = np.array([[frame_powers[:, 0].min(), 0],
[frame_powers[:, 0].mean(), 0],
[frame_powers[:, 0].max(), 0]])
kmeans = KMeans(n_clusters=3, init=init_centers, n_init=1).fit(frame_powers)
kmeans_labels = kmeans.labels_
# Значения frame_powers, соответствующие нулевому кластеру (label = 0), или участкам паузы
i, j = 0, 0
pauses_power_cluster = np.zeros(kmeans_labels[kmeans_labels == 0].shape[0])
for label in kmeans_labels:
if label == 0:
pauses_power_cluster[j] = frame_powers[i][0]
j += 1
i += 1
# Критерий Неймана-Пирсона для улучшения определения участков пауз
b = 0.01
U = pauses_power_cluster.mean() / 10 + b * pauses_power_cluster.std()
samples_without_pauses = []
i = 0
for label in kmeans_labels:
if (label == 0 and frame_powers[i][0] > U) or label != 0:
samples_without_pauses.extend(samples[i * n_in_frame:(i + 1) * n_in_frame])
i += 1
return np.array(samples_without_pauses)
def plot_signal(sample_rate, signal):
plt.plot(np.linspace(0, len(signal) / sample_rate, num=len(signal)), signal)
plt.grid(True)
def show_signal_and_power(sample_rate, signal, frame_powers):
plt.subplot(2, 1, 1)
plot_signal(sample_rate, signal)
plt.subplot(2, 1, 2)
plt.plot(frame_powers[:, 0])
plt.grid(True)
plt.show()
def pot_normalized_signal(sample_rate, signal):
plot_signal(sample_rate, normalize_signal(signal))
def normalize_signal(signal):
return signal / np.max(np.abs(signal))
if __name__ == '__main__':
(rate, sig) = wavfile.read("speakers/russian/male/Peter/ru_0039.wav")
normalized_sig = normalize_signal(sig)
show_signal_and_power(rate, normalized_sig, get_frame_powers(rate, normalized_sig)[0])
signal_without_pauses = remove_pauses(rate, normalized_sig)
show_signal_and_power(rate, signal_without_pauses, get_frame_powers(rate, signal_without_pauses)[0])
wavfile.write("without_pauses.wav", rate, signal_without_pauses)