-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy path_prepro_aistpp_music.py
121 lines (92 loc) · 3.46 KB
/
_prepro_aistpp_music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this open-source project.
import os
import sys
import json
import random
import argparse
import essentia
import essentia.streaming
from essentia.standard import *
import librosa
import numpy as np
from extractor import FeatureExtractor
from aistplusplus_api.aist_plusplus.loader import AISTDataset
from smplx import SMPL
import torch
parser = argparse.ArgumentParser()
parser.add_argument('--input_video_dir', type=str, default='aist_plusplus_final/all_musics')
parser.add_argument('--store_dir', type=str, default='data/aistpp_music_feat_7.5fps')
parser.add_argument('--sampling_rate', type=int, default=15360*2/8)
args = parser.parse_args()
store_dir = args.store_dir
extractor = FeatureExtractor()
if not os.path.exists(args.store_dir):
os.mkdir(args.store_dir)
def make_music_dance_set(video_dir):
print('---------- Extract features from raw audio ----------')
musics = []
dances = []
fnames = []
train = []
test = []
# music_dance_keys = []
# onset_beats = []
audio_fnames = sorted(os.listdir(video_dir))
ii = 0
# all_names = train + test
for audio_fname in audio_fnames:
print(audio_fname)
video_file = audio_fname
sr = args.sampling_rate
loader = essentia.standard.MonoLoader(filename=os.path.join(video_dir, video_file), sampleRate=sr)
audio = loader()
audio = np.array(audio).T
feature = extract_acoustic_feature(audio, sr)
print(os.path.join(args.store_dir, f'{audio_fname[:-4]}.json'))
with open(os.path.join(args.store_dir, f'{audio_fname[:-4]}.json'), 'w') as f:
sample_dict = {
'id': audio_fname[:-4],
'music_array': feature.tolist(), # musics[idx+i],
}
# print(sample_dict)
json.dump(sample_dict, f)
def extract_acoustic_feature(audio, sr):
melspe_db = extractor.get_melspectrogram(audio, sr)
mfcc = extractor.get_mfcc(melspe_db)
mfcc_delta = extractor.get_mfcc_delta(mfcc)
# mfcc_delta2 = get_mfcc_delta2(mfcc)
audio_harmonic, audio_percussive = extractor.get_hpss(audio)
# harmonic_melspe_db = get_harmonic_melspe_db(audio_harmonic, sr)
# percussive_melspe_db = get_percussive_melspe_db(audio_percussive, sr)
chroma_cqt = extractor.get_chroma_cqt(audio_harmonic, sr, octave=7 if sr==15360*2 else 5)
# chroma_stft = extractor.get_chroma_stft(audio_harmonic, sr)
onset_env = extractor.get_onset_strength(audio_percussive, sr)
tempogram = extractor.get_tempogram(onset_env, sr)
onset_beat = extractor.get_onset_beat(onset_env, sr)[0]
# onset_tempo, onset_beat = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
# onset_beats.append(onset_beat)
onset_env = onset_env.reshape(1, -1)
feature = np.concatenate([
# melspe_db,
mfcc, # 20
mfcc_delta, # 20
# mfcc_delta2,
# harmonic_melspe_db,
# percussive_melspe_db,
# chroma_stft,
chroma_cqt, # 12
onset_env, # 1
onset_beat, # 1
tempogram
], axis=0)
# mfcc, #20
# mfcc_delta, #20
# chroma_cqt, #12
# onset_env, # 1
# onset_beat, #1
feature = feature.transpose(1, 0)
print(f'acoustic feature -> {feature.shape}')
return feature
if __name__ == '__main__':
make_music_dance_set(args.input_video_dir)