-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy pathmain.py
executable file
·138 lines (117 loc) · 5.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import argparse
import importlib
import random
import os
import tensorflow as tf
from flearn.utils.model_utils import read_data
# GLOBAL PARAMETERS
OPTIMIZERS = ['fedavg', 'fedprox', 'feddane', 'fedddane', 'fedsgd', 'fedprox_origin']
DATASETS = ['sent140', 'nist', 'shakespeare', 'mnist',
'synthetic_iid', 'synthetic_0_0', 'synthetic_0.5_0.5', 'synthetic_1_1'] # NIST is EMNIST in the paepr
MODEL_PARAMS = {
'sent140.bag_dnn': (2,), # num_classes
'sent140.stacked_lstm': (25, 2, 100), # seq_len, num_classes, num_hidden
'sent140.stacked_lstm_no_embeddings': (25, 2, 100), # seq_len, num_classes, num_hidden
'nist.mclr': (26,), # num_classes
'mnist.mclr': (10,), # num_classes
'mnist.cnn': (10,), # num_classes
'shakespeare.stacked_lstm': (80, 80, 256), # seq_len, emb_dim, num_hidden
'synthetic.mclr': (10, ) # num_classes
}
def read_options():
''' Parse command line arguments or load defaults '''
parser = argparse.ArgumentParser()
parser.add_argument('--optimizer',
help='name of optimizer;',
type=str,
choices=OPTIMIZERS,
default='fedavg')
parser.add_argument('--dataset',
help='name of dataset;',
type=str,
choices=DATASETS,
default='nist')
parser.add_argument('--model',
help='name of model;',
type=str,
default='stacked_lstm.py')
parser.add_argument('--num_rounds',
help='number of rounds to simulate;',
type=int,
default=-1)
parser.add_argument('--eval_every',
help='evaluate every ____ rounds;',
type=int,
default=-1)
parser.add_argument('--clients_per_round',
help='number of clients trained per round;',
type=int,
default=-1)
parser.add_argument('--batch_size',
help='batch size when clients train on data;',
type=int,
default=10)
parser.add_argument('--num_epochs',
help='number of epochs when clients train on data;',
type=int,
default=1)
parser.add_argument('--num_iters',
help='number of iterations when clients train on data;',
type=int,
default=1)
parser.add_argument('--learning_rate',
help='learning rate for inner solver;',
type=float,
default=0.003)
parser.add_argument('--mu',
help='constant for prox;',
type=float,
default=0)
parser.add_argument('--seed',
help='seed for randomness;',
type=int,
default=0)
parser.add_argument('--drop_percent',
help='percentage of slow devices',
type=float,
default=0.1)
try: parsed = vars(parser.parse_args())
except IOError as msg: parser.error(str(msg))
# Set seeds
random.seed(1 + parsed['seed'])
np.random.seed(12 + parsed['seed'])
tf.set_random_seed(123 + parsed['seed'])
# load selected model
if parsed['dataset'].startswith("synthetic"): # all synthetic datasets use the same model
model_path = '%s.%s.%s.%s' % ('flearn', 'models', 'synthetic', parsed['model'])
else:
model_path = '%s.%s.%s.%s' % ('flearn', 'models', parsed['dataset'], parsed['model'])
mod = importlib.import_module(model_path)
learner = getattr(mod, 'Model')
# load selected trainer
opt_path = 'flearn.trainers.%s' % parsed['optimizer']
mod = importlib.import_module(opt_path)
optimizer = getattr(mod, 'Server')
# add selected model parameter
parsed['model_params'] = MODEL_PARAMS['.'.join(model_path.split('.')[2:])]
# print and return
maxLen = max([len(ii) for ii in parsed.keys()]);
fmtString = '\t%' + str(maxLen) + 's : %s';
print('Arguments:')
for keyPair in sorted(parsed.items()): print(fmtString % keyPair)
return parsed, learner, optimizer
def main():
# suppress tf warnings
tf.logging.set_verbosity(tf.logging.WARN)
# parse command line arguments
options, learner, optimizer = read_options()
# read data
train_path = os.path.join('data', options['dataset'], 'data', 'train')
test_path = os.path.join('data', options['dataset'], 'data', 'test')
dataset = read_data(train_path, test_path)
# call appropriate trainer
t = optimizer(options, learner, dataset)
t.train()
if __name__ == '__main__':
main()