-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_chains.py
265 lines (221 loc) · 8.88 KB
/
models_chains.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import torch.nn as nn
import torch.nn.functional as F
from functions import *
from layers import ImplicitGraph, IDM_SGC
from torch.nn import Parameter
from utils import get_spectral_rad, SparseDropout
import torch.sparse as sparse
from torch_geometric.nn import GCNConv, GATConv, SGConv, APPNP, GCN2Conv, JumpingKnowledge, MessagePassing
from torch_geometric.utils import remove_self_loops, to_scipy_sparse_matrix
import numpy as np
from utils import *
import time
import ipdb
import scipy
class IGNN(nn.Module):
def __init__(self, nfeat, nhid, nclass, num_node, dropout, kappa=0.9, adj_orig=None):
super(IGNN, self).__init__()
self.adj = None
self.adj_rho = None
self.adj_orig = adj_orig
#one layer with V
self.ig1 = ImplicitGraph(nfeat, nhid, num_node, kappa)
self.dropout = dropout
self.X_0 = Parameter(torch.zeros(nhid, num_node), requires_grad=False)
self.V = nn.Linear(nhid, nclass, bias=False)
def forward(self, features, adj):
if adj is not self.adj:
self.adj = adj
self.adj_rho = get_spectral_rad(adj)
x = features
x = self.ig1(self.X_0, adj, x, F.relu, self.adj_rho, A_orig=self.adj_orig).T
x = F.normalize(x, dim=-1)
x = F.dropout(x, self.dropout, training=self.training)
x = self.V(x)
return x
class IGNN_finite(nn.Module):
def __init__(self, m, m_y, nhid, K, dropout):
super(IGNN_finite, self).__init__()
self.lin1 = nn.Linear(m, nhid, bias=False)
self.lin2 = nn.Linear(nhid, m_y, bias=False)
self.num_layers = K
self.hid_layer = nn.Linear(nhid, nhid, bias=False)
self.dropout = dropout
# self.prop1 = APPNP(K=K, alpha=alpha)
def reset_parameters(self):
self.lin1.reset_parameters()
self.lin2.reset_parameters()
self.hid_layer.reset_parameters()
def forward(self, x, adj):
# x: (f,n), lin1: (f->h)
# lin2 (h -> m_y), hid_layer(h -> h)
x_first = self.lin1(x.T).T
x = x_first
# ipdb.set_trace()
for _ in range(self.num_layers):
# tmp = torch.spmm(self.hid_layer(x.T).T, adj) + x_first
tmp = torch.spmm(torch.transpose(adj, 0, 1), self.hid_layer(x.T)).T + x_first
x = F.relu(tmp)
x = x.T
x = F.normalize(x, dim=-1)
x = F.dropout(x, self.dropout, training=self.training)
x = self.lin2(x)
return x
class EIGNN_Linear(nn.Module):
def __init__(self, adj, sp_adj, m, m_y, num_eigenvec, gamma):
super(EIGNN_Linear, self).__init__()
self.EIGNN = IDM_SGC(adj, sp_adj, m, num_eigenvec, gamma)
self.B = nn.Linear(m, m_y, bias=False)
self.reset_parameters()
def reset_parameters(self):
self.B.reset_parameters()
self.EIGNN.reset_parameters()
def forward(self, X):
output = self.EIGNN(X).t()
output = F.normalize(output, dim=-1)
output = F.dropout(output, 0.5, training=self.training)
output = self.B(output)
return output
epsilon_F = 10**(-12)
def g(F):
FF = F.t() @ F
FF_norm = torch.norm(FF, p='fro')
return (1/(FF_norm+epsilon_F)) * FF
def get_G(Lambda_F, Lambda_S, gamma):
G = 1.0 - gamma * Lambda_F @ Lambda_S.t()
G = 1 / G
return G
class GCN(nn.Module):
def __init__(self, m, m_y, hidden):
super(GCN, self).__init__()
self.gc1 = GCNConv(m, hidden)
self.gc2 = GCNConv(hidden, m_y)
def forward(self, x, edge_index):
out = self.gc1(x, edge_index)
out = F.relu(out)
out = F.dropout(out, p=0.5, training=self.training)
out = self.gc2(out, edge_index)
return out
class GAT(nn.Module):
def __init__(self, m, m_y, hidden, heads):
super(GAT, self).__init__()
self.gat1 = GATConv(m, hidden, heads=heads)
self.gat2 = GATConv(heads*hidden, m_y, heads=heads)
def forward(self, x, edge_index):
out = self.gat1(x, edge_index)
out = F.elu(out)
out = F.dropout(out, p=0.8, training=self.training)
out = self.gat2(out, edge_index)
return out
class SGC(nn.Module):
def __init__(self, m, m_y, K):
super(SGC, self).__init__()
self.sgc = SGConv(m, m_y, K)
self.reset_parameters()
def reset_parameters(self):
self.sgc.reset_parameters()
def forward(self, x, edge_index):
out = self.sgc(x, edge_index)
return out
class APPNP_Net(nn.Module):
def __init__(self, m, m_y, nhid, K, alpha):
super(APPNP_Net, self).__init__()
self.lin1 = nn.Linear(m, nhid)
self.lin2 = nn.Linear(nhid, m_y)
self.prop1 = APPNP(K=K, alpha=alpha)
def reset_parameters(self):
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, x, edge_index):
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(self.lin1(x))
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin2(x)
out = self.prop1(x, edge_index)
return out
class GCN_JKNet(torch.nn.Module):
def __init__(self, m, m_y, hidden, layers=8):
in_channels = m
out_channels = m_y
super(GCN_JKNet, self).__init__()
self.convs = nn.ModuleList()
self.convs.append(GCNConv(in_channels, hidden))
for _ in range(layers-1):
self.convs.append(GCNConv(hidden, hidden))
# self.conv1 = GCNConv(in_channels, hidden)
# self.conv2 = GCNConv(hidden, hidden)
self.lin1 = nn.Linear(layers*hidden, out_channels)
# self.lin1 = torch.nn.Linear(64, out_channels)
# self.one_step = APPNP(K=1, alpha=0)
# self.JK = JumpingKnowledge(mode='lstm',
# channels=64,
# num_layers=4)
self.JK = JumpingKnowledge(mode='cat')
def forward(self, x, edge_index):
final_xs = []
for conv in self.convs:
x = F.relu(conv(x, edge_index))
x = F.dropout(x, p=0.5, training=self.training)
final_xs.append(x)
x = self.JK(final_xs)
x = self.lin1(x)
return x
class GCNII_Model(torch.nn.Module):
def __init__(self, m, m_y, hidden=64, layers=64, alpha=0.5, theta=1.):
super(GCNII_Model, self).__init__()
self.lin1 = nn.Linear(m, hidden)
self.convs = torch.nn.ModuleList()
for i in range(layers):
self.convs.append(GCN2Conv(channels=hidden,
alpha=alpha, theta=theta, layer=i+1))
self.lin2 = nn.Linear(hidden, m_y)
def forward(self, x, edge_index):
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(self.lin1(x))
x_0 = x
for conv in self.convs:
x = F.dropout(x, p=0.5, training=self.training)
x = F.relu(conv(x, x_0, edge_index))
x = F.dropout(x, p=0.5, training=self.training)
out = self.lin2(x)
return out
class H2GCN_Prop(MessagePassing):
def __init__(self):
super(H2GCN_Prop, self).__init__()
def forward(self, h, norm_adj_1hop, norm_adj_2hop):
h_1 = torch.sparse.mm(norm_adj_1hop, h) # if OOM, consider using torch-sparse
h_2 = torch.sparse.mm(norm_adj_2hop, h)
h = torch.cat((h_1, h_2), dim=1)
return h
class H2GCN(torch.nn.Module):
def __init__(self, m, m_y, hidden, edge_index, dropout=0.5, act='relu'):
super(H2GCN, self).__init__()
self.dropout = dropout
self.lin1 = nn.Linear(m, hidden, bias=False)
self.act = torch.nn.ReLU() if act == 'relu' else torch.nn.Identity()
self.H2GCN_layer = H2GCN_Prop()
self.num_layers = 1
self.lin_final = nn.Linear((2**(self.num_layers+1)-1)*hidden, m_y, bias=False)
# self.lin_final = nn.Linear((self.num_layers+1)*hidden, m_y, bias=False)
adj = to_scipy_sparse_matrix(remove_self_loops(edge_index)[0])
adj_2hop = adj.dot(adj)
adj_2hop = adj_2hop - sp.diags(adj_2hop.diagonal())
adj = indicator_adj(adj)
adj_2hop = indicator_adj(adj_2hop)
norm_adj_1hop = get_normalized_adj(adj)
self.norm_adj_1hop = sparse_mx_to_torch_sparse_tensor(norm_adj_1hop, 'cuda')
norm_adj_2hop = get_normalized_adj(adj_2hop)
self.norm_adj_2hop = sparse_mx_to_torch_sparse_tensor(norm_adj_2hop, 'cuda')
def forward(self, x, edge_index=None):
hidden_hs = []
h = self.act(self.lin1(x))
hidden_hs.append(h)
for i in range(self.num_layers):
h = self.H2GCN_layer(h, self.norm_adj_1hop, self.norm_adj_2hop)
hidden_hs.append(h)
h_final = torch.cat(hidden_hs, dim=1)
# print(f'lin_final.size(): {self.lin_final.weight.size()}, h_final.size(): {h_final.size()}')
h_final = F.dropout(h_final, p=self.dropout, training=self.training)
output = self.lin_final(h_final)
return output